Research Article
BibTex RIS Cite

1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı ve Hirshfeld Yüzey Analizi

Year 2022, Volume: 10 Issue: 1, 128 - 138, 31.01.2022
https://doi.org/10.29130/dubited.823399

Abstract

Bu çalışmanın amacı, 1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol bileşiğinin X-ışınları tek kristal kırınım yöntemi ile kristal yapısının ve Hirshfeld yüzey analizinin araştırılmasıdır. Kapalı formülü C24H21ClN2O olan bu bileşikte; 4-klorofenil, 2-metilfenil ve benzen halkaları, 3-metil-1H-pirazol halkasına göre sırasıyla 59.8 (2), 25.2 (2) ve 45.6 (2)°’ lik dihedral açılarıyla yönlenmektedirler. Moleküller, moleküler paketlemenin dengelenmesine katkıda bulunmak için moleküller arası C–H ··· π etkileşimleriyle bağlanmıştır. Ayrıca bileşikteki supramoleküler etkileşimleri doğrulamak ve ölçmek için Hirshfeld yüzey analizi kullanılmıştır. Elde edilen veriler, kristal paketlemede en önemli katkıların H···H (%49.8), H···C/C···H (%27.6) ve H ··· Cl/Cl· ··H (%10.4) etkileşimlerinden kaynaklandığını göstermiştir.

Supporting Institution

TÜBİTAK

Project Number

TÜBİTAK # 215S015

Thanks

Bu çalışmanın verileri, Aksaray Üniversitesi Bilimsel ve Teknolojik Uygulama ve Araştırma Merkezi’nde bulunan Devlet Planlama Teşkilatının 2010K120480 numarası ile satın alınan Bruker SMART BREEZE CCD difraktometresinden elde edilmiştir. Ayrıca, C24H21ClN2O bileşiğinin geliştirilmesi Türkiye Bilimsel ve Teknolojik Araştırma Kurumu araştırma projesi (TÜBİTAK # 215S015) kapsamında desteklenmiştir.

References

  • [1] F. Şen, “4-(3-metil-3-fenilsiklobütil)-2-(2-(piridin-4-ylmetilen)hidrazinil) tiyazol’un sentezi, karakterizasyonu, kristalografik yapısı ve Hirshfeld yüzeyinin incelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, s. 1, ss. 157–168, 2018.
  • [2] M. R. Yadav, P. Murumkar, and R. Ghuge, Vicinal Diaryl Substituted Heterocycles, 1st ed., Oxford, UK: Elsevier, 2018, pp. 1–20.
  • [3] E. Banoglu, E. Celikoglu, S. Volker, A. Olgac, J. Gerstmeier, U. Garscha, B. Caliskan, U. S. Schubert, A. Carotti, A. Macchiarulo, and O. Werz, “4, 5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP),” European Journal of Medicinal Chemistry, vol. 113, pp. 1–10, 2016.
  • [4] B. Caliskan, S. Luderer, Y. Ozkan, O. Werz and E. Banoglu, “Pyrazol-3-propanoic acid derivatives as novel inhibitors of leukotriene biosynthesis in human neutrophils,” European Journal of Medicinal Chemistry, vol. 46, no. 10, pp. 5021–5033, 2011.
  • [5] Y. Dundar, S. Unlu, E. Banoglu, A. Entrena, G. Costantino, M. T. Nunez, F. Ledo, M. F. Sahin, and N. Noyanalpan, “Synthesis and biological evaluation of 4,5-diphenyloxazolonederivatives on route towards selective COX-2 inhibitors,” European Journal of Medicinal Chemistry, vol. 44, pp. 4785–4785, 2009.
  • [6] G. Eren, S. Unlu, M. T. Nunez, L. Labeaga, F. Ledo, A. Entrena, E. Banoglu, G. Costantino, and M. F. Sahin, “Synthesis, biological evaluation, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors,” Bioorg. Med. Chem., vol. 18, no. 17, pp. 6367–6376, 2010.
  • [7] B. C. Ergun, M. T. Nunez, L. Labeaga, F. Ledo, J. Darlington, G. Bain, B. Cakir, and E. Banoglu, “Synthesis of 1,5-diarylpyrazol-3-propanoic acids towards inhibition of cyclooxygenase-1/2 activity and 5-lipoxygenase-mediated LTB4 formation,” Arzneimittel-forschung, vol. 60, no. 8, 497–505, 2010.
  • [8] U. Garscha, S. Voelker, S. Pace, J. Gerstmeier, B. Emini, S. Liening, A. Rossi, C. Weinigel, S. Rummler, U. S. Schubert, G. K. Scriba, E. Celikoglu, B. Caliskan, E. Banoglu, L. Sautebin, and O. Werz, “BRP-187: A potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase/5-lipoxygenase-activating protein (FLAP) complex assembly,” Biochemical Pharmacology, vol. 119, no. 17–26, 2016.
  • [9] S. Levent, B. Caliskan, M. Ciftci, Y. Ozkan, I. Yenicesu, H. Unver, and E. Banoglu, “Pyrazole derivatives as inhibitors of arachidonic acid-induced platelet aggregation,” European Journal of Medicinal Chemistry, vol. 64, pp. 42–53, 2013.
  • [10] S. C. Pirol, B. Caliskan, I. Durmaz, R. Atalay, and E. Banoglu, “Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines,” European Journal of Medicinal Chemistry, vol. 87, pp. 140–149, 2014.
  • [11] S. Unlu, E. Banoglu, S. Ito, T. Niiya, G. Eren, B. Okcelik, and M. F. Sahin, “Synthesis, characterization and preliminary screening of regioisomeric 1-(3-pyridazinyl)-3-arylpyrazole and 1-(3-pyridazinyl)-5-arylpyrazole derivatives towards cyclooxygenase inhibition,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 22, no. 3, pp. 351–361, 2007.
  • [12] Bruker, APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA, 2007.
  • [13] G. M. Sheldrick, “A short history of SHELX,” Acta Cryst., vol. A64, pp. 112–122, 2008.
  • [14] G. M. Sheldrick, SHELXL-2018, Universität of Göttingen, Germany, 2018.
  • [15] L. J. Farrugia, “WinGX and ORTEP for Windows: an update,” Journal of Applied Crystallography, vol. 45, pp. 849–854, 2012.
  • [16] A. L. Spek, “Structure validation in chemical crystallography,” Acta Cryst., vol. D65, pp. 148–155, 2009.
  • [17] A. Aydin, Z. Soyer, M. Akkurt, and O. Buyukgungor, “Crystal structure and theoretical study of N,N-di[(5-chloro-2-oxo-2,3-dihydrobenzo[d]oxazole-3-yl)methyl]ethanamine,” Universal Journal of Physics and Application, vol. 11, no. 2, pp. 57–61, 2017.
  • [18] A. Aydin, M. Akkurt, M. Sukuroglu, and O. Buyukgungor, “Crystal structure of 4-(4-chlorophenyl)-6-(morpholin-4-yl)pyridazin-3(2H)-one,” Acta Cryst., vol. E71, pp. 944–946, 2015.
  • [19] S. K. Singh, A. Kumar, A. Vats, K. S. Bisht, V. S Parmar, and W. Errington, “5-Cyanomethyl-3-(4-methylphenyl)-1-phenylpyrazole,” Acta Cryst., vol. C51, pp. 2404-2406, 1995.
  • [20] H. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theoretica Chimica Acta, vol. 44, pp. 129–138, 1977.
  • [21] M. A Spackman, and D. Jayatilaka, “Hirshfeld surface analysis,” Crystal Engineering Communication, vol. 11, no.1, pp. 19–32, 2009.
  • [22] M. J. Turner, J. J. MacKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, Crystal Explorer17.5, University of Western Australia: Perth, Australia, 2017.
  • [23] A. Parkin, G. Barr, W. Dong, C. J. Gilmore, D. Jayatilaka, J. J. McKinnon, M. A. Spackman, and C. C. Wilson, “Comparing entire crystal structures: Structural genetic fingerprinting,” Crystal Engineering Communication, vol. 9, no. 8, pp. 648–652, 2007.
  • [24] A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. McKinnon, and B. Kahr, “Hirshfeld surfaces identify inadequacies in computation of intermolecular interactions in crystals: Pentamorphic 1,8-dihydroxyanthraquinone,” Crystal Growth & Design, vol. 8, no. 12, pp. 4517–4525, 2008.
  • [25] M. Spackman, and J. J. McKinnona, “Fingerprinting intermolecular interactions in molecular crystals,” Crystal Engineering Communication, vol. 4, pp. 378–392, 2002.
  • [26] S. Uzun, ve Z. Demircioğlu, “Bis[2-(metilamino)troponato]bakır(II) molekülünün yapısal ve elektronik özelliklerinin deneysel ve kuramsal analizleri,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, c. 15, s. 1, ss. 9–22, 2020.

Crystal structure and Hirshfeld surface analysis of 1-(4-chlorophenyl)-3-methyl-5-{4-[(2-methylphenyl)methoxy]phenyl}-1H-pyrazole

Year 2022, Volume: 10 Issue: 1, 128 - 138, 31.01.2022
https://doi.org/10.29130/dubited.823399

Abstract

The aim of the present work is to explore crystal structure and hirshfeld surface analysis of 1-(4-chlorophenyl)-3-methyl-5-{4-[(2-methylphenyl)methoxy]phenyl}-1H-pyrazole. In the title compound, C24H21ClN2O, the 4-chlorophenyl, 2-methylphenyl and benzene rings are oriented with dihedral angles of 59.8 (2), 25.2 (2) and 45.6 (2)°, respectively, with respect to the 3-methyl-1H-pyrazole ring. Molecules are linked by intermolecular C–H···π interactions to contribute to the stabilization of the molecular packing. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions and report that the most important contributions for the crystal packing are from H···H (49.8%) and H···C/C···H (27.6%) and H···Cl/Cl···H (10.4%) interactions.

Project Number

TÜBİTAK # 215S015

References

  • [1] F. Şen, “4-(3-metil-3-fenilsiklobütil)-2-(2-(piridin-4-ylmetilen)hidrazinil) tiyazol’un sentezi, karakterizasyonu, kristalografik yapısı ve Hirshfeld yüzeyinin incelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, s. 1, ss. 157–168, 2018.
  • [2] M. R. Yadav, P. Murumkar, and R. Ghuge, Vicinal Diaryl Substituted Heterocycles, 1st ed., Oxford, UK: Elsevier, 2018, pp. 1–20.
  • [3] E. Banoglu, E. Celikoglu, S. Volker, A. Olgac, J. Gerstmeier, U. Garscha, B. Caliskan, U. S. Schubert, A. Carotti, A. Macchiarulo, and O. Werz, “4, 5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP),” European Journal of Medicinal Chemistry, vol. 113, pp. 1–10, 2016.
  • [4] B. Caliskan, S. Luderer, Y. Ozkan, O. Werz and E. Banoglu, “Pyrazol-3-propanoic acid derivatives as novel inhibitors of leukotriene biosynthesis in human neutrophils,” European Journal of Medicinal Chemistry, vol. 46, no. 10, pp. 5021–5033, 2011.
  • [5] Y. Dundar, S. Unlu, E. Banoglu, A. Entrena, G. Costantino, M. T. Nunez, F. Ledo, M. F. Sahin, and N. Noyanalpan, “Synthesis and biological evaluation of 4,5-diphenyloxazolonederivatives on route towards selective COX-2 inhibitors,” European Journal of Medicinal Chemistry, vol. 44, pp. 4785–4785, 2009.
  • [6] G. Eren, S. Unlu, M. T. Nunez, L. Labeaga, F. Ledo, A. Entrena, E. Banoglu, G. Costantino, and M. F. Sahin, “Synthesis, biological evaluation, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors,” Bioorg. Med. Chem., vol. 18, no. 17, pp. 6367–6376, 2010.
  • [7] B. C. Ergun, M. T. Nunez, L. Labeaga, F. Ledo, J. Darlington, G. Bain, B. Cakir, and E. Banoglu, “Synthesis of 1,5-diarylpyrazol-3-propanoic acids towards inhibition of cyclooxygenase-1/2 activity and 5-lipoxygenase-mediated LTB4 formation,” Arzneimittel-forschung, vol. 60, no. 8, 497–505, 2010.
  • [8] U. Garscha, S. Voelker, S. Pace, J. Gerstmeier, B. Emini, S. Liening, A. Rossi, C. Weinigel, S. Rummler, U. S. Schubert, G. K. Scriba, E. Celikoglu, B. Caliskan, E. Banoglu, L. Sautebin, and O. Werz, “BRP-187: A potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase/5-lipoxygenase-activating protein (FLAP) complex assembly,” Biochemical Pharmacology, vol. 119, no. 17–26, 2016.
  • [9] S. Levent, B. Caliskan, M. Ciftci, Y. Ozkan, I. Yenicesu, H. Unver, and E. Banoglu, “Pyrazole derivatives as inhibitors of arachidonic acid-induced platelet aggregation,” European Journal of Medicinal Chemistry, vol. 64, pp. 42–53, 2013.
  • [10] S. C. Pirol, B. Caliskan, I. Durmaz, R. Atalay, and E. Banoglu, “Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines,” European Journal of Medicinal Chemistry, vol. 87, pp. 140–149, 2014.
  • [11] S. Unlu, E. Banoglu, S. Ito, T. Niiya, G. Eren, B. Okcelik, and M. F. Sahin, “Synthesis, characterization and preliminary screening of regioisomeric 1-(3-pyridazinyl)-3-arylpyrazole and 1-(3-pyridazinyl)-5-arylpyrazole derivatives towards cyclooxygenase inhibition,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 22, no. 3, pp. 351–361, 2007.
  • [12] Bruker, APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA, 2007.
  • [13] G. M. Sheldrick, “A short history of SHELX,” Acta Cryst., vol. A64, pp. 112–122, 2008.
  • [14] G. M. Sheldrick, SHELXL-2018, Universität of Göttingen, Germany, 2018.
  • [15] L. J. Farrugia, “WinGX and ORTEP for Windows: an update,” Journal of Applied Crystallography, vol. 45, pp. 849–854, 2012.
  • [16] A. L. Spek, “Structure validation in chemical crystallography,” Acta Cryst., vol. D65, pp. 148–155, 2009.
  • [17] A. Aydin, Z. Soyer, M. Akkurt, and O. Buyukgungor, “Crystal structure and theoretical study of N,N-di[(5-chloro-2-oxo-2,3-dihydrobenzo[d]oxazole-3-yl)methyl]ethanamine,” Universal Journal of Physics and Application, vol. 11, no. 2, pp. 57–61, 2017.
  • [18] A. Aydin, M. Akkurt, M. Sukuroglu, and O. Buyukgungor, “Crystal structure of 4-(4-chlorophenyl)-6-(morpholin-4-yl)pyridazin-3(2H)-one,” Acta Cryst., vol. E71, pp. 944–946, 2015.
  • [19] S. K. Singh, A. Kumar, A. Vats, K. S. Bisht, V. S Parmar, and W. Errington, “5-Cyanomethyl-3-(4-methylphenyl)-1-phenylpyrazole,” Acta Cryst., vol. C51, pp. 2404-2406, 1995.
  • [20] H. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theoretica Chimica Acta, vol. 44, pp. 129–138, 1977.
  • [21] M. A Spackman, and D. Jayatilaka, “Hirshfeld surface analysis,” Crystal Engineering Communication, vol. 11, no.1, pp. 19–32, 2009.
  • [22] M. J. Turner, J. J. MacKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, Crystal Explorer17.5, University of Western Australia: Perth, Australia, 2017.
  • [23] A. Parkin, G. Barr, W. Dong, C. J. Gilmore, D. Jayatilaka, J. J. McKinnon, M. A. Spackman, and C. C. Wilson, “Comparing entire crystal structures: Structural genetic fingerprinting,” Crystal Engineering Communication, vol. 9, no. 8, pp. 648–652, 2007.
  • [24] A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. McKinnon, and B. Kahr, “Hirshfeld surfaces identify inadequacies in computation of intermolecular interactions in crystals: Pentamorphic 1,8-dihydroxyanthraquinone,” Crystal Growth & Design, vol. 8, no. 12, pp. 4517–4525, 2008.
  • [25] M. Spackman, and J. J. McKinnona, “Fingerprinting intermolecular interactions in molecular crystals,” Crystal Engineering Communication, vol. 4, pp. 378–392, 2002.
  • [26] S. Uzun, ve Z. Demircioğlu, “Bis[2-(metilamino)troponato]bakır(II) molekülünün yapısal ve elektronik özelliklerinin deneysel ve kuramsal analizleri,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, c. 15, s. 1, ss. 9–22, 2020.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Abdullah Aydın 0000-0003-2805-9314

Sumeyye Turanlı 0000-0002-6291-6079

Mehmet Akkurt 0000-0003-2421-0929

Erden Banoğlu 0000-0003-4737-1733

Nefise Özçelik 0000-0002-6972-1071

Project Number TÜBİTAK # 215S015
Publication Date January 31, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Aydın, A., Turanlı, S., Akkurt, M., Banoğlu, E., et al. (2022). 1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı ve Hirshfeld Yüzey Analizi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 10(1), 128-138. https://doi.org/10.29130/dubited.823399
AMA Aydın A, Turanlı S, Akkurt M, Banoğlu E, Özçelik N. 1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı ve Hirshfeld Yüzey Analizi. DUBİTED. January 2022;10(1):128-138. doi:10.29130/dubited.823399
Chicago Aydın, Abdullah, Sumeyye Turanlı, Mehmet Akkurt, Erden Banoğlu, and Nefise Özçelik. “1-(4-Klorofenil)-3-Metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı Ve Hirshfeld Yüzey Analizi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 10, no. 1 (January 2022): 128-38. https://doi.org/10.29130/dubited.823399.
EndNote Aydın A, Turanlı S, Akkurt M, Banoğlu E, Özçelik N (January 1, 2022) 1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı ve Hirshfeld Yüzey Analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10 1 128–138.
IEEE A. Aydın, S. Turanlı, M. Akkurt, E. Banoğlu, and N. Özçelik, “1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı ve Hirshfeld Yüzey Analizi”, DUBİTED, vol. 10, no. 1, pp. 128–138, 2022, doi: 10.29130/dubited.823399.
ISNAD Aydın, Abdullah et al. “1-(4-Klorofenil)-3-Metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı Ve Hirshfeld Yüzey Analizi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 10/1 (January 2022), 128-138. https://doi.org/10.29130/dubited.823399.
JAMA Aydın A, Turanlı S, Akkurt M, Banoğlu E, Özçelik N. 1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı ve Hirshfeld Yüzey Analizi. DUBİTED. 2022;10:128–138.
MLA Aydın, Abdullah et al. “1-(4-Klorofenil)-3-Metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı Ve Hirshfeld Yüzey Analizi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 10, no. 1, 2022, pp. 128-3, doi:10.29130/dubited.823399.
Vancouver Aydın A, Turanlı S, Akkurt M, Banoğlu E, Özçelik N. 1-(4-klorofenil)-3-metil-5-{4-[(2-metilfenil)metoksi]fenil}-1H-pirazol’ün Kristal Yapısı ve Hirshfeld Yüzey Analizi. DUBİTED. 2022;10(1):128-3.