

Research Article

New Operators in Ideal Topological Spaces and Their Closure Spaces

Shyamapada Modak^{*}, Md. Monirul Islam

Department of Mathematics, University of Gour Banga, Malda 732 103, West Bengal, India

Received Date: Aug 10, 2019
 Revised Date: Nov 8, 2019
 Accepted Date: Dec 19, 2019
 Published Online: Dec 23, 2019

Abstract

In this paper, we introduce two operators associated with Ψ^* and $*^{\Psi}$ operators in ideal topological spaces and discuss the properties of these operators. We give further characterizations of Hayashi-Samuel spaces with the help of these two operators. We also give a brief discussion on homeomorphism of generalized closure spaces which were induced by these two operators.

Keywords

Ideal topological spaces, Δ -operator, ∇ -operator, Hayashi-Samuel space, isotonic spaces, homeomorphism.

1. INTRODUCTION

The study of local function on ideal topological space was introduced by Kuratowski [1] and Vaidyanathswamy [2]. The mathematicians like Jankovic and Hamlett [3, 4], Samuel [5], Hayashi [6], Hashimoto [7], Newcomb [8], Modak [9, 10], Bandyopadhyay and Modak [11, 12], Noiri and Modak [13], Al-Omari et al. [14, 15, 16, 17] have enriched this study. Natkaniec in [18] have introduced the complement of local function and it is called Ψ -Operator. In an ideal topological space (X, τ, \mathcal{I}) , the local function ()^{*} is defined as: $A^*(\mathcal{I}, \tau)$ (or, simply, A^*) = { $x \in X : U_x \cap A \notin \mathcal{I}$ }, where $U_x \in \tau(x)$, the collection of all open sets containing x. Its

2017-2019©Published by AksarayUniversity

^{*}Corresponding Author: Shyamapada Modak, spmodak2000@yahoo.co.in

complement function, that is, Ψ -operator is defined as: $\Psi(A) = X \setminus (X \setminus A)^*$. Using these two set functions, ()^{*} and Ψ , Modak and Islam [19, 20] have introduced two moreoperators in the ideal topological spaces and they are: ${}^{*\Psi}(A) = \Psi(A^*) = X \setminus (X \setminus A^*)^*$ and $\Psi^*(A) = (\Psi(A))^* = \{x \in X : U_x \cap \Psi(A) \notin \mathcal{I}\}$, where $U_x \in \tau(x)$.

Following example shows that the values of the operators Ψ^* and $*^{\Psi}$ are not the same:

Example 1.1. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then, $*^{\Psi}(X) = \Psi(X^*)$ = $\Psi(\{a, b\}) = X \setminus (\{c\})^* = X$ and $(\Psi(X))^* = X^* = \{a, b\}$. Therefore, $\Psi^*(X) \neq *^{\Psi}(X)$.

The value of the operator $*^{\Psi}$ is an open set and the value of the operator Ψ^* is a closed set. In this paper, we further consider the operators using joint operators Ψ^* and $*^{\Psi}$ simultaneously and shall define two more operators using of Ψ^* and $*^{\Psi}$ which is Δ and meet of Ψ^* and $*^{\Psi}$ which is ∇ . We also consider the values of these two operators on various ideal topological spaces as well as various subsets of the ideal topological space. We also give a bunch of characterization of Hayashi-Samuel space. An ideal topological space (X, τ, \mathcal{I}) is called

Hayashi-Samuel space [21], if $\tau \cap \mathcal{I} = \{\emptyset\}$. Theauthors Hamlett and Jankovi *c* [3] called it by the name of τ -boundary, whereas the authors Dontchev, Ganster and Rose [22] called it by the name of codense ideal. In the study of ideal topological spaces, it played an important role. Two well known Hayashi-Samuel spaces are: Let τ be a topology on a set X, then $(X, \tau, \{\emptyset\})$ is a Hayashi-Samuel space and if \mathcal{I}_n is the collection of all nowhere dense subsets of (X, τ) , then (X, τ, \mathcal{I}_n) is also a Hayashi-Samuel space.

Further, we also give the topological properties of the generalized closure spaces [23, 24] induced by the above mentioned operators Δ and ∇ .

Now we shall give a few words about generalized closure spaces. The study of closure spaces was introduced by Habil and Elzenati [23] in 2003 and Stadler [24] in 2005. Generalized closure space is the generalization of closure space and its definition is as follows:

Definition 1.2. Let X be a set, $\wp(X)$ be the power set of X and $cl: \wp(X) \to \wp(X)$ be any arbitrary set-valued set-function, called a closure function. We call cl(A) the closure of A, and we call the pair (X, cl) a generalized closure space (see [23, 24]).

Consider the following axioms (see [23, 24]) of the closure function for all $A, B, A_{\lambda} \in \mathcal{O}(X)$,

 Λ is an index set:

The closure function in a generalized closure space (X, cl) is called:

(K0) grounded, if $cl(\emptyset) = \emptyset$. (K1) isotonic, if $A \subseteq B$ implies $cl(A) \subseteq cl(B)$. (K2) expanding, if $A \subseteq cl(A)$. (K3) sub-additive, if $cl(A \cup B) \subseteq cl(A) \cup cl(B)$. (K4) idempotent, if cl(cl(A)) = cl(A). (K5) additive, if $\bigcup_{\lambda \in \Lambda} cl(A_{\lambda}) = cl(\bigcup_{\lambda \in \Lambda} (A_{\lambda}))$.

Definition 1.3. [24, 25, 26] A pair (X, cl) is said to be an isotonic space if it satisfies the axioms (K0) and (K1). If an isotonic space (X, cl) satisfies (K2), then it is called a neighbourhood space. A closure space that satisfies (K4), is called a neighbourhood space. A topological space, that satisfies (K3), is a closure space.

'int' is the complement function of the closure function *'cl'* and it is defined as:

$$int(A) = X \setminus cl(X \setminus A)$$
, for $A \subseteq X$.

2. Δ **Operator**

Definition 2.1. Let (X, τ, \mathcal{I}) be an ideal topological space. We define the operator $\Delta: \wp(X) \rightarrow \wp(X)$ as:

$$\Delta(A) = \Psi^*(A) \cup {}^{*\Psi}(A)$$
, for $A \subseteq X$.

Observe that, for $A \subseteq X$, $\Delta(A)$ is the union of an open set and a closed set.

The next example shows that union of an open set and a closed set is not always an expression of $\Delta(A)$, for any $A \subseteq X$.

Example 2.2. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Let $A_1 = \{a\}$ and $A_2 = \{c\}$. Then, A_1 is open and A_2 is closed. Then $A_1 \cup A_2 = \{a, c\}$. Now $(\Psi(\emptyset))^* = \emptyset$ = $(\Psi(\{b\}))^* = (\Psi(\{c\}))^* = (\Psi(\{b, c\}))^*, (\Psi(\{a\}))^* = X = (\Psi(\{a, b\}))^* = (\Psi(\{a, c\}))^*$

$$= (\Psi(X))^* \text{ and } \Psi(\emptyset^*) = \emptyset = \Psi((\{b\})^*) = \Psi((\{c\})^*) = \Psi((\{b,c\})^*), \Psi((\{a\})^*) = X$$
$$= \Psi((\{a,b\})^*) = \Psi((\{a,c\})^*) = \Psi(X^*). \text{ So there is no } T \in \wp(X) \text{ such that } \Delta(T) = A_1 \cup A_2.$$
If $\mathcal{I} = \{\emptyset\}$, then $\Delta(A) = Int(Cl(A)) \cup Cl(Int(A))$ (where 'Int' and 'Cl' denote the interior and closure operator of (X,τ) respectively) and if $\mathcal{I} = \mathcal{I}_n$, then
$$\Delta(A) = [Int(Cl(Int(Cl(Int(Cl(A))))))] \cup [Cl(Int(Cl(Int(Cl(Int(A))))))]$$
$$= Int(Cl(A)) \cup Cl(Int(A)).$$

Therefore, the value of Δ , for any subset A of X on $(X, \tau, \{\emptyset\})$ and (X, τ, \mathcal{I}_n) are equal.

The operator Δ is not grounded and it follows from the following example:

Example 2.3. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then, $\Delta(\emptyset) = \Psi^*(\emptyset) \cup {}^{*\Psi}(\emptyset) = \emptyset \cup \{a\} = \{a\} \neq \emptyset$. So, the operator Δ is not grounded.

Theorem 2.4. An ideal topological space (X, τ, \mathcal{I}) is Hayashi-Samuel, if and only if, the operator $\Delta: \wp(X) \to \wp(X)$ is grounded.

Proof. Suppose that (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then, $X = X^*$ [4]. Now, $\Delta(\emptyset) = \Psi^*(\emptyset) \cup {}^{*\Psi}(\emptyset) = (X \setminus X^*)^* \cup (X \setminus X^*) = \emptyset^* \cup \emptyset = \emptyset$.

Conversely suppose that $\Delta(\emptyset) = \emptyset$. Then $\Psi^*(\emptyset) \cup {}^{*\Psi}(\emptyset) = \emptyset$, implies, $(\Psi(\emptyset))^* \cup \Psi(\emptyset^*) = \emptyset$, implies, $(X \setminus X^*)^* \cup (X \setminus X^*) = \emptyset$. Thus, $X \setminus X^* = \emptyset$ and $(X \setminus X^*)^* = \emptyset$. Hence, (X, τ, \mathcal{I}) is a Hayashi-Samuel space.

We recall following definition:

Definition 2.5. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then, A is said to be a Ψ^* -set [9] (resp. Ψ -C set [12], regular open set [27]) if $A \subseteq (\Psi(A))^*$ (resp. $A \subseteq Cl(\Psi(A)), A = Int(Cl(A))$).

The collection of all Ψ^* -sets (resp. $\Psi - C$ sets) in (X, τ, \mathcal{I}) is denoted as $\Psi^*(X, \tau)$ (resp. $\Psi(X, \tau)$).

Corollary 2.6. In an ideal topological space (X, τ, \mathcal{I}) , the following properties are equivalent:

- 1. (X, τ, \mathcal{I}) is a Hayashi-Samuel space [20];
- 2. $\Psi(\emptyset) = \emptyset$ [20];
- 3. if $A \subseteq X$ is closed, then, $\Psi(A) \setminus A = \emptyset$ [20];
- 4. $*^{\Psi} : \wp(X) \to \wp(X)$ is grounded;
- 5. if $A \subseteq X$, then, $Int(Cl(A)) = \Psi(Int(Cl(A)))$ [20];
- 6. *A* is regular open, $A = \Psi(A)[20]$;
- 7. Δ is grounded;
- 8. if $U \in \tau$, then, $\Psi(U) \subseteq Int(Cl(U)) \subseteq U^*[20];$
- 9. if $I \in \mathcal{I}$, then, $\Psi(I) = \emptyset$ [20];
- 10. $\Psi^*(X,\tau) = \Psi(X,\tau)$ [20];
- 11. $\Psi^*(A) = Cl(\Psi(A))$, for each $A \subseteq X$ [20];
- 12. $G \subseteq G^*$, for each $G \in \tau$;
- 13. $\Psi^*(X) = X$;
- 14. if $J \in \mathcal{I}$, then, $Int(J) = \emptyset$.

Proof. Follows from Theorem 2.4 and Corollary 2.18 of [20].

Theorem 2.7. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the operator $\Delta : \wp(X) \to \wp(X)$ is isotonic.

Proof. Follows from the following facts:

- (*i*) The operator * is isotonic.
- (*ii*) The operator ψ is isotonic.

The following example shows that the operator Δ is not expanding.

Example 2.8. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Let $A = \{a\}$. Then, $\Psi^*(A) = \emptyset = {}^{*\Psi}(A)$. Thus, $\Delta(A) = \Psi^*(A) \cup {}^{*\Psi}(A) = \emptyset$. Hence, $A \nsubseteq \Delta(A)$. **Theorem 2.9.** Let (X, τ, \mathcal{I}) be an ideal topological space. Then for $A, B \in \wp(X)$, $\Delta(A) \cup \Delta(B) \subseteq \Delta(A \cup B)$.

Proof. Let $A, B \in \mathcal{D}(X)$. Since, $A \subseteq A \cup B$ and Δ is isotonic, hence, $\Delta(A) \subseteq \Delta(A \cup B)$. Similarly, $\Delta(B) \subseteq \Delta(A \cup B)$. Hence $\Delta(A) \cup \Delta(B) \subseteq \Delta(A \cup B)$. Since $Int(Cl(A \cup B)) \neq Int(Cl(A)) \cup Cl(Int(A)) \cup Cl(Int(B)) \cup Int(Cl(B))$, the operator Δ is not sub-additive, and hence it is not additive.

Theorem 2.10. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then $\Delta(A) \subseteq A^*$, for any $A \subseteq X$.

Proof. Follows from the following facts:

- (*i*) $\Psi(A^*) \subseteq A^*$, for any $A \in \wp(X)$.
- (*ii*) $(\Psi(A))^* \subseteq A^*$, for any $A \in \wp(X)$.

Corollary 2.11.Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then $\Delta(A) \subseteq Cl^*(A)$, for any $A \subseteq X$.

Corollary 2.12. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then $\Delta(X) = X$.

Following example shows that the converse of the Corollary 2.12 does not hold, in general.

Example 2.13. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then, * $^{\Psi}(X) = \Psi(X^*) = \Psi(\{a, b\}) = X \setminus (\{c\})^* = X$ and $(\Psi(X))^* = X^* = \{a, b\}$. Therefore, $\Delta(X) = \Psi^*(X) \cup {}^{*\Psi}(X) = X$ but (X, τ, \mathcal{I}) is not a Hayashi-Samuel space.

Theorem 2.14. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then for $U \in \tau$, $Int(Cl(U)) \subseteq \Delta(U) \subseteq U^* = Cl(U)$.

Proof. We have, $\Delta(U) = \Psi^*(U) \cup {}^{*\Psi}(U) = (\Psi(U))^* \cup \Psi(U^*) = Cl(\Psi(U)) \cup \Psi(Cl(U))$ [13] = $Cl(\Psi(U)) \cup [X \setminus (X \setminus Cl(U))^*] = [X \setminus Cl\Psi(U) \cup Cl(X \setminus Cl(U))]$. This implies that $Int(Cl(U)) \subseteq \Delta(U)$. Further, from Theorem 2.10, $\Delta(U) \subseteq U^* \subseteq Cl(U)$. Thus $Int(Cl(U)) \subseteq \Delta(U) \subseteq U^* = Cl(U)$.

The authors Jankovi *c* and Hamlett have introduced a new topology $\tau^*(\mathcal{I})$ [4] from (X, τ, \mathcal{I}) . Its closure operator is denoted as Cl^* [4].

Theorem 2.15. Let (X, τ, \mathcal{I}) be an ideal topological space and $J \in \mathcal{I}$. Then, $\Delta(J) = Cl^*(X \setminus X^*).$

Proof. Let $J \in \mathcal{I}$. Then, $(X \setminus J)^* = X^*$ [4]. $\Delta(J) = \Psi^*(J) \cup {}^{*\Psi}(J) = (\Psi(J))^* \cup \Psi(J^*)$ = $(X \setminus (X \setminus J)^*)^* \cup \Psi(\emptyset) = (X \setminus X^*)^* \cup (X \setminus X^*) = Cl^*(X \setminus X^*)$ [12].

Corollary 2.16. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space and $J \in \mathcal{I}$. Then, $\Delta(J) = \emptyset$. It is not necessary that $\Delta(A) = \emptyset$ implies $A \in \mathcal{I}$.

Example 2.17. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Let $A = \{b, c\} \notin \mathcal{I}$. Then, $\Psi^*(A) = {}^{*\Psi}(A) = \emptyset$. So, $\Delta(A) = \emptyset$. This example shows that $\Delta(A) = \emptyset$ but $A \notin \mathcal{I}$.

Corollary 2.18. Let (X, τ, \mathcal{I}) be an ideal topological space. Then, $\Delta(A \cup J) = \Delta(A \setminus J) = \Delta(A)$, for $A \subseteq X, J \in \mathcal{I}$.

Proof. Obvious from [3] and [4].

3. ∇ **Operator**

In this section, we shall define another operator ∇ and discuss the role of ∇ in Hayashi-Samuel spaces.

Definition 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space. We define the operator $\nabla : \wp(X) \rightarrow \wp(X)$ as:

$$\nabla(A) = \Psi^*(A) \cap {}^{*\Psi}(A)$$
, for $A \subseteq X$.

It is obvious that for a subset A of X, the value $\nabla(A)$ is the intersection of a closed set and an open set, since, $\Psi^*(A)$ is a closed set and $*^{\Psi}(A)$ is an open set. Thus, $\nabla(A)$ is a locally closed set in (X, τ) for any $A \in \wp(X)$.

Example 3.2. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Also let $H = \{b\}$. Then $H = \{a, b\} \cap \{b, c\}$. So H is a locally closed set. Now, $(\Psi(\emptyset))^* = \emptyset = (\Psi(\{b\}))^*$ $= (\Psi(\{c\}))^* = (\Psi(\{b, c\}))^*, (\Psi(\{a\}))^* = X = (\Psi(\{a, b\}))^* = (\Psi(\{a, c\}))^* = (\Psi(X))^*$ and $\Psi(\emptyset^*) = \emptyset = \Psi((\{b\})^*) = \Psi((\{c\})^*) = \Psi((\{b, c\})^*), \Psi((\{a\})^*) = X = \Psi((\{a, b\})^*)$ $= \Psi((\{a, c\})^*) = \Psi(X^*)$.

So, there does not exist any set $A, B \subseteq X$, such that H can be expressed as $H = (\Psi(A))^* \cap \Psi(B^*)$. Therefore, we conclude that locally closed set cannot be decomposed by the operators Ψ^* and $*^{\Psi}$.

If
$$\mathcal{I} = \{\emptyset\}$$
, then $\nabla(A) = \Psi^*(A) \cap {}^{*\Psi}(A) = (\Psi(A))^* \cap \Psi(A^*) = [Int(Cl(A))] \cap [Cl(Int(A))]$.

If $\mathcal{I} = \mathcal{I}_n$, then $\nabla(A) = \Psi^*(A) \cap {}^{*\Psi}(A) = (\Psi(A))^* \cap \Psi(A^*) = [Int(Cl(A))] \cap [Cl(Int(A))]$ = $[Int(Cl(Int(Cl(Int(Cl(A))))))] \cap [Cl(Int(Cl(Int(Cl(Int(A))))))].$ Moreover, $X \setminus \Delta(A) = \nabla(X \setminus A)$.

The value of ∇ on a subset A of X on the spaces $(X, \tau, \{\emptyset\})$ and (X, τ, \mathcal{I}_n) are equal.

Theorem 3.3. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then the operator $\nabla : \wp(X) \to \wp(X)$ is grounded.

Proof. Obvious from the facts that:

- (*i*) $X = X^*$, for the Hayashi-Samuel space (X, τ, \mathcal{I}) .
- $(ii) *^{\Psi}(\emptyset) = \emptyset$.
- (*iii*) $\Psi^*(\emptyset) = \emptyset$.

The following example shows that the converse of the above theorem is not true, in general:

Example 3.4. Let $X = \{a, b\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$.

Then $\nabla(\emptyset) = \Psi^*(\emptyset) \cap {}^{*\Psi}(\emptyset) = \emptyset \cap \{a\} = \emptyset$, but (X, τ, \mathcal{I}) is not a Hayashi-Samuel space.

Theorem 3.5. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the operator $\nabla : \wp(X) \to \wp(X)$ is isotonic.

Proof. Since, both the operators * and Ψ are isotonic, then ∇ is isotonic.

The following Example shows that the operator ∇ is not expanding.

Example 3.6. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Let $A = \{a\}$. Then, $\Psi^*(A) = \emptyset = {}^{*\Psi}(A)$. Thus, $\nabla(A) = \Psi^*(A) \cap {}^{*\Psi}(A) = \emptyset$. Hence, $A \nsubseteq \nabla(A)$.

The following example shows that the operator ∇ is not subadditive.

Example 3.7. Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Let $A = \{a\}$ and $B = \{b\}$. Then, $\Psi^*(A) = \{a, c, d\}$, ${}^{*\Psi}(A) = \{a\}$ and $\Psi^*(B) = \{b, c, d\}$, ${}^{*\Psi}(B) = \{b\}$. So $\nabla(A) = \Psi^*(A) \cap {}^{*\Psi}(A) = \{a\}$ and $\nabla(B) = \Psi^*(B) \cap {}^{*\Psi}(B) = \{b\}$. So, $\nabla(A) \cup \nabla(B) = \{a, b\}$. Also, $\Psi^*(A \cup B) = X$ and ${}^{*\Psi}(A \cup B) = X$. Thus, $\nabla(A \cup B) = \Psi^*(A \cup B) \cap {}^{*\Psi}(A \cup B) = X$. Therefore, $\nabla(A \cup B) \notin \nabla(A) \cup \nabla(B)$. Hence, ∇ is not subadditive.

Remark 3.8. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the operator $\nabla : \wp(X) \to \wp(X)$ is not additive.

However following holds:

Theorem 3.9. Let (X, τ, \mathcal{I}) be an ideal topological space. Then for $A, B \in \wp(X)$, $\nabla(A) \cup \nabla(B) \subseteq \nabla(A \cup B)$. **Proof.** Let $A, B \in \wp(X)$. Since, $A \subseteq A \cup B$ and ∇ is isotonic, then, $\nabla(A) \subseteq \nabla(A \cup B)$. Similarly, $\nabla(B) \subseteq \nabla(A \cup B)$. Hence, $\nabla(A) \cup \nabla(B) \subseteq \nabla(A \cup B)$.

Theorem 3.10. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then $\nabla(A) \subseteq A^*$, for any $A \subseteq X$.

Proof. It is obvious from the following facts:

(*i*) $*^{\Psi}(A) \subseteq A^*$, for the Hayashi-Samuel space (X, τ, \mathcal{I}) .

(*ii*) $\Psi^*(A) \subseteq A^*$, for the Hayashi-Samuel space (X, τ, \mathcal{I}) .

Corollary 3.11. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then $\nabla(A) \subseteq Cl^*(A)$, for any $A \subseteq X$.

Corollary 3.12. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then

1.
$$\Delta(A) \cup \nabla(A) \subseteq A^*$$
, for any $A \subseteq X$.
2. $\Delta(A) \cap \nabla(A) \subseteq A^*$, for any $A \subseteq X$.

Theorem 3.13. An ideal topological space (X, τ, \mathcal{I}) is Hayashi-Samuel, if and only if, $\nabla(X) = X$.

Proof. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then $X^* = X$. Then, $\nabla(X) = \Psi^*(X) \cap^{*\Psi}(X) = [(X \setminus (X \setminus X)^*)^*] \cap [X \setminus (X \setminus X^*)^*] = X^* \cap X = X$. Conversely suppose that $X = \nabla(X) = \Psi^*(X) \cap^{*\Psi}(X) = (\Psi(X))^* \cap \Psi(X^*)$ $= [X \setminus (X \setminus X)^*]^* \cap [X \setminus (X \setminus X^*)^*] = [X \setminus (X \setminus X^*)^*] \cap X^* \subseteq X^*$. Thus, $X = X^*$, and hence the space is Hayashi-Samuel.

Corollary 3.14. In an ideal topological space (X, τ, \mathcal{I}) , the following properties are equivalent:

- 1. (X, τ, \mathcal{I}) is a Hayashi-Samuel space [20];
- 2. $\Psi(\emptyset) = \emptyset$ [20];
- 3. if $A \subseteq X$ is closed, then, $\Psi(A) \setminus A = \emptyset$ [20];
- 4. $*^{\Psi} : \wp(X) \to \wp(X)$ is grounded;

- 5. if $A \subseteq X$, then, $Int(Cl(A)) = \Psi(Int(Cl(A)))$ [20]; 6. *A* is regular open, $A = \Psi(A)$ [20]; 7. Δ is grounded; 8. $\nabla(X) = X$; 9. if $U \in \tau$, then, $\Psi(U) \subseteq Int(Cl(U)) \subseteq U^*$ [20]; 10. if $I \in \mathcal{I}$, then, $\Psi(I) = \emptyset$ [20]; 11. $\Psi^*(X, \tau) = \Psi(X, \tau)$ [20]; 12. $\Psi^*(A) = Cl(\Psi(A))$, for each $A \subseteq X$ [20]; 13. $G \subseteq G^*$, for each $G \in \tau$; 14. $\Psi^*(X) = X$;
- 15. if $J \in \mathcal{I}$, then, $Int(J) = \emptyset$.

Corollary 3.15. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space such that $\nabla(X) = X$. Then, $\Psi^*(X) = X$ and $*^{\Psi}(X) = X$.

Proof. Follows from the fact that, $X = \nabla(X) \subseteq \Psi^*(X) \subseteq X^*$ and $X = \nabla(X) \subseteq {}^{*\Psi}(X) \subseteq X^*$.

Theorem 3.16. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then, for $U \in \tau$, $Int(Cl(U)) \subseteq \nabla(U)$.

Proof. We have $\nabla(U) = \Psi^*(U) \cap {}^{*\Psi}(U) = (\Psi(U))^* \cap \Psi(U^*) = Cl(\Psi(U)) \cap \Psi(Cl(U))$ $= Cl[X \setminus (X \setminus U)^*] \cap [X \setminus Cl(U))^*]$ $\supseteq [X \setminus Int(Cl(X \setminus U))] \cap [X \setminus Cl(X \setminus Cl(U))]$ $= [X \setminus (X \setminus Cl(U))] \cap Int(Cl(U)) = Cl(U) \cap Int(Cl(U)) = Int(Cl(U)).$

Corollary 3.17. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then for $U \in \tau$, $Int(Cl(U)) \subseteq \nabla(U) \subseteq U^* = Cl(U)$.

Theorem 3.18. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space and $J \in \mathcal{I}$. Then, $\nabla(J) = \emptyset$.

Proof. Let $J \in \mathcal{I}$. Then, $J^* = \emptyset$ [4]. Now, $\nabla(J) = \Psi^*(J) \cap {}^{*\Psi}(J) = (\Psi(J))^* \cap \Psi(J^*)$ = $(X \setminus (X \setminus J)^*)^* \cap \Psi(\emptyset) = (X \setminus X)^* \cap (X \setminus X^*) = \emptyset$.

The converse of this theorem is not true in general.

Example 3.19. Let $X = \{a, b\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Let $J = \{a\}$. Then, $\nabla(J) = \Psi^*(J) \cap {}^{*\Psi}(J) = \emptyset \cap \{a\} = \emptyset$. Here the space (X, τ, \mathcal{I}) is not a Hayashi-Samuel space.

Corollary 3.20. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space and $J \in \mathcal{I}$, then $\nabla(J) = \Delta(J) = \emptyset$.

Corollary 3.21. Let (X, τ, \mathcal{I}) be an ideal topological space. Then, for $A \subseteq X, J \in \mathcal{I}$, $\nabla(A \setminus J) = \nabla(A \cup J) = \nabla(A)$.

Proof. Obvious from [3] and [4].

Lemma 3.22. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then, for $A \subseteq X$

1.*
$$^{\Psi}(A) = X \setminus \Psi^*(X \setminus A)$$
.
2.* $^{\Psi}(X \setminus A) = X \setminus \Psi^*(A)$.

More general relation between Δ and ∇ is:

Theorem 3.23. Let (X, τ, \mathcal{I}) be a Hayashi-Samuel space. Then for $A \subseteq X$, $\nabla(A) = X \setminus \Delta(X \setminus A)$.

Proof. We have

$$\begin{split} X \searrow \nabla(A) &= X \searrow [\Psi^*(A) \cap^{*\Psi}(A)] = [X \searrow \Psi^*(A)] \cup [X \searrow^{*\Psi}(A)] \\ &= {}^{*\Psi}(X \searrow A) \cup [X \searrow (X \searrow \Psi^*(X \searrow A))] = [\Psi^*(X \searrow A) \cup {}^{*\Psi}(X \searrow A)] = \Delta(X \searrow A) \,. \end{split}$$

4. Spaces induced by Δ and ∇

In generalized closure space (X, cl), two concepts were defined: one is closure preserving [26] and other is continuity [26]. But fortunately, two concepts are coincident in the isotonic space [24, 26]. Here we define continuity in isotonic space.

Definition 4.1. [24, 26] Let (X, cl_X) and (Y, cl_Y) be two generalized closure spaces. A function $f: X \to Y$ is continuous if $cl_X(f^{-1}(B)) \subseteq f^{-1}(cl_Y(B))$, for all $B \in \wp(Y)$.

In isotonic spaces, (X, cl_x) and (Y, cl_y) , we can represent the continuity by the following way:

Definition 4.2. [24, 26] Let (X, cl_X) and (Y, cl_Y) be two generalized closure spaces. A function $f: X \to Y$ is closure-preserving (or continuous), if for all $A \in \wp(X)$, $f(cl_X(A)) \subseteq cl_Y(f(A))$

Now, for the isotonic spaces, (X, Δ) and (X, ∇) , it is obvious that $f(\nabla(A)) \subseteq f(\Delta(A))$, since, $\nabla(A) \subseteq \Delta(A)$, for any function $f: X \to X$ and for any $A \in \wp(X)$.

Further, if the function $f:(X,\Delta) \to (X,\nabla)$ is closure-preserving (or continuous), then, $f(\Delta(A)) \subseteq \nabla f(A)$, for any subset $A \in \wp(X)$. Thus, we have following:

Theorem 4.3. Let $f:(X,\Delta) \to (X,\nabla)$ be a closure-preserving function. Then, $f(\nabla(A)) \subseteq f(\Delta(A)) \subseteq \nabla(f(A))$, for all $A \in \wp(X)$.

We define homeomorphism between two isotonic spaces from [25]:

Definition 4.4. If (X, cl) and (Y, cl) are isotonic spaces and $f: (X, cl_X) \to (Y, cl_Y)$ is a bijection, then f is a homeomorphism if and only if $f(cl_X(A)) = cl_Y(f(A))$, for every $A \in \wp(X)$

Corollary 4.5. Let $f:(X,\Delta) \to (X,\nabla)$ be a bijective closure-preserving function such that $\nabla f(A) \subseteq f(\Delta(A))$, for all $A \in \wp(X)$. Then, f is a homeomorphism.

Theorem 4.6. The identity function $i:(X,\nabla) \to (X,\Delta)$ is always a closure-preserving (or continuous) function.

Proof. We know that $i(\nabla(A)) \subseteq i(\Delta(A)) = \Delta(A) = \Delta(i(A))$.

Example 4.7. Let $X = \{a, b\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Let $A = \{a\}$ and $i: (X, \Delta) \to (X, \nabla)$ be the identity function. Then, i(A) = A, $\Delta(A) = \{a\}$ and $\nabla(A) = \emptyset$. So, $i(\Delta(A)) \nsubseteq \nabla(i(A))$. This example shows that the identity function $i: (X, \Delta) \to (X, \nabla)$ may not be a closure-preserving function.

Corollary 4.8. A closure-preserving bijective mapping $f:(X, \Delta) \to (X, \nabla)$ is homeomorphism, if and only if, $\nabla(f(A)) \subseteq f(\Delta(A))$, for all $A \in \wp(X)$.

Proof. Suppose, $\nabla(f(A)) \subseteq f(\Delta(A))$. Then, from the Corollary 4.5, f is a homeomorphism. Conversely, suppose $f:(X,\Delta) \to (X,\nabla)$ is a homeomorphism, then $\nabla(f(A)) \subseteq f(\Delta(A))$ is obvious.

Definition 4.9. [26] A generalized closure space (X, cl) is a T_0 -space if and only if for any $x, y \in X$ with $x \neq y$, there exists $N_x \in \mathcal{N}(x)$ (where $\mathcal{N}(x) = \{N \in \wp(X) : x \in Int(N)\}$) such that $y \notin N_x$ or there exists $N_y \in \mathcal{N}(y)$ (where $\mathcal{N}(y) = \{N \in \wp(X) : y \in Int(N)\}$) such that $x \notin N_y$.

Definition 4.10. [25] A generalized closure space (X, cl) is a T_1 -space if, for any $x, y \in X$ with $x \neq y$, there exists $N' \in \mathcal{N}(x)$ and $N'' \in \mathcal{N}(y)$ such that $x \notin N''$ and $y \notin N'$.

Definition 4.11. [25] A generalized closure space (X, cl) is a T_2 -space if and only if, for all $x, y \in X$ with $x \neq y$, there exists $N' \in \mathcal{N}(x)$ and $N'' \in \mathcal{N}(y)$ such that $N' \cap N'' = \emptyset$.

Definition 4.12. [25] A space (X, cl) is a $T_{2\frac{1}{2}}$ -space if and only if, for all $x, y \in X$ with $x \neq y$, there exists $N' \in \mathcal{N}(x)$ and $N'' \in \mathcal{N}(y)$ such that $cl(N') \cap cl(N'') = \emptyset$.

Theorem 4.13. Let $f:(X, \Delta) \to (X, \nabla)$ be a bijective closure-preserving function such that $\nabla(f(A)) \subseteq f(\Delta(A))$, for all $A \in \wp(X)$. Then, the followings hold:

- 1. (X, Δ) is a T_0 -space, if and only if, (X, ∇) is a T_0 -space.
- 2. (X, Δ) is a T_1 -space, if and only if, (X, ∇) is a T_1 -space.
- 3. (X, Δ) is a T₂-space, if and only if, (X, ∇) is a T₂-space.
 4. (X, Δ) is a T_{2¹/2}-space, if and only if, (X, ∇) is a T_{2¹/2}-space.

Definition 4.14. Let (X, cl_X) and (Y, cl_Y) be two generalized closure spaces. A function $f: X \to Y$ is called anti closure-preserving if $cl_Y(f(A)) \subseteq f(cl_X(A))$, for all $A \in \wp(X)$.

Existence of anti closure-preserving function:

Example 4.15. Let $X = \{a, b, c\} = Y$. Let us define $cl_X : \wp(X) \to \wp(X)$ by, $cl_X(\emptyset) = \emptyset$, $cl_X(\{a\}) = \{a\}$, $cl_X(\{b\}) = \{b\}$, $cl_X(\{c\}) = \{c\}$, $cl_X(\{a, b\}) = \{a, b\}$, $cl_X(\{a, c\}) = \{a, b\}$, $cl_X(\{b, c\}) = \{b, c\}$, $cl_X(X) = X$ and $cl_Y : \wp(X) \to \wp(X)$ by $cl_Y(\emptyset) = \emptyset$, $cl_Y(\{a\}) = \{a, b\}$, $cl_Y(\{b\}) = \{b, c\}$, $cl_Y(\{c\}) = \{b, c\}$, $cl_Y(\{a, b\}) = Y$, $cl_Y(\{a, c\}) = Y$, $cl_Y(\{b, c\}) = \{b, c\}$, $cl_Y(Y) = Y$.

Define $f:(Y,cl_Y) \to (X,cl_X)$ by f(x) = x. Then $cl_X(f(\emptyset)) = \emptyset$, $cl_X(f(Y)) = X$, $cl_X(f\{a\}) = \{a\}, cl_X(f\{b\}) = \{b\}, cl_X(f\{c\}) = \{c\}, cl_X(f\{a,b\}) = \{a,b\} = cl_X(f\{a,c\})$, $cl_X(f\{b,c\}) = \{b,c\}$ and $f(cl_Y(\emptyset)) = \emptyset$, $f(cl_Y(\{a\})) = \{a,b\}$, $f(cl_Y(\{b\})) = \{b,c\}$ $= f(cl_Y(\{c\})) = f(cl_Y(\{b,c\}))$, $f(cl_Y(\{a,b\})) = X = f(cl_Y(\{a,c\})) = f(cl_Y(Y))$.

Thus $cl_{X}(f(\emptyset)) = f(cl_{Y}(\emptyset)), cl_{X}(f(Y)) = f(cl_{Y}(Y)), cl_{X}(f\{a\}) \subseteq f(cl_{Y}(\{a\})),$

 $cl_{X}(f\{b\}) \subseteq f(cl_{Y}(\{b\})), cl_{X}(f\{c\}) \subseteq f(cl_{Y}(\{c\})), cl_{X}(f\{a,b\}) \subseteq f(cl_{Y}(\{a,b\})),$

 $cl_{X}(f\{b,c\}) \subseteq f(cl_{Y}(\{b,c\})), cl_{X}(f\{a,c\}) \subseteq f(cl_{Y}(\{a,c\})).$

Thus we see that f is an anti closure-preserving function.

Note that the identity function $i: (X, \Delta) \to (Y, \nabla)$ is always an anti closure-preserving function, since, for all $A \subseteq X$, $\nabla(i(A)) = \nabla(A) \subseteq \Delta(A) = i(\Delta(A))$.

Remark 4.16. We can replace " $\nabla(f(A)) \subseteq f(\Delta(A))$ " in Corollary 4.5, Corollary 4.8 and Theorem 4.13 by "*f* is an anti closure-preserving function".

REFERENCES

- [1] K. Kuratowski, Topology, Vol. I. New York: Academic Press, 1966.
- [2] R.Vaidyanathswamy, *The localisation theory in set topology*, Proc. India Acad. Sci., 20 (1945) 51-61.
- [3] T. R. Hamlett, D.Jankovi*c*, *Ideals in Topological Spaces and the Set Operator* Ψ , Bollettino U. M. I., 7 (4-B) (1990) 863-874.
- [4] D. Jankovi*c*, T.R. Hamlett, *New topologies from old via ideals*, Amer. Math. Monthly, 97 (**1990**) 295-310.
- [5] P. Samuels, A topology formed from a given topology and ideal, J. Lond. Math. Soc., 10 (1975) 409-416.
- [6] E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964) 205-215.
- [7] H. Hashimoto, On the *-topology and its application, Fund. Math., 91 (1976) 5-10.
- [8] R.L. Newcomb, *Topologies Which are Compact Modulo an Ideal*, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, **1967**.

[9] S. Modak, *Some new topologies on ideal topological spaces*, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 82 (3) (**2012**) 233-243.

- [10] S. Modak, *Minimal spaces with a mathematical structure*, J. Assoc. Arab Univ. BasicAppl. Sci., 22 (2017) 98-101.
- [11] C. Bandyopadhyay, S.Modak, A new topology via ψ -operator, Proc. Nat. Acad. Sci.India, 76(A), IV (2006) 317-320.

- [12] S. Modak, C. Bandyopadhyay, A note on ψ operator, Bull. Malyas. Math. Sci. Soc., 30 (1) (2007) 43-48.
- [13] S. Modak, T. Noiri, *Connectedness of Ideal Topological Spaces*, Filomat, 29 (4) (2015) 661-665.
- [14] A. Al-Omari, T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math., 43 (2)(2013) 139-149.
- [15] A. Al-Omari, T. Noiri, $On \Psi_*$ -operator in ideal *m*-spaces, Bol. Soc. Paran. Mat., (3s.), 30 (1)(**2012**) 53-66.
- [16] A. Al-Omari, T. Noiri, On operators in ideal minimal spaces, Mathematica, 58 (81), No. 1-2 (2016) 3-13.
- [17] W.F. Al-Omeri, Mohd.Salmi, Md.Noorani, T.Noiri, A. Al-Omari, *The* \Re_a operator in *ideal topological spaces*, Creat. Math. Inform., 25 (1) (**2016**) 1-10.
- [18] T. Natkaniec, On I -continuity and I -semicontinuity points, Math. Slovaca, 36 (3) (1986) 297-312.
- [19] Md. M. Islam, S. Modak, Operator associated with the * and Ψ operators, J. Taibah Univ. Sci., 12 (4) (2018) 444-449.
- [20] S. Modak, Md. M. Islam, On* and Ψ operators in topological spaces with ideals, Trans.
 A. Razmadze Math. Inst., 172 (2018) 491-497.
- [21] J. Dontchev, *Idealization of Ganster-Reilly decomposition theorems*, arXIV:math. Gn/9901017v1 [math.GN], **1999**.
- [22] J. Dontchev, M. Ganster, D. Rose, Ideal resolvability, Topology Appl., 93 (1999) 1-16.
- [23] D.E. Habil, A.K. Elzenati, *Connectedness in isotonic spaces*, Turk. J. Math. TUBITAK, 30 (**2006**) 247-262.
- [24] B.M.R. Stadler, P.F. Stadler, *Higher separation axioms in generalized closure spaces*, Comment. Math. Prace Mat., ser.I.-Rocz. Polsk. Tow. Mat., Ser.I., 43 (**2003**) 257-273.
- [25] D.E. Habil, A.K. Elzenati, *Topological Properties in Isotonic Spaces*, IUG Journal of natural studies, 16 (2) (**2008**) 1-14.
- [26] B.M.R. Stadler, P.F. Stadler, Basic properties of closure spaces, J. Chem. Inf. Comput. Sci., 42 (2002) 577-590.
- [27] M.H. Stone, Application of the theory of Boolean rings to general topology, Trans.Amer. Math. Soc., 41 (1937) 375-481.