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Abstract

In this study, we introduce a new model called the Odd Burr Lindley
distribution which extends the Lindley distribution and has increas-
ing, bathtub and upside down shapes for the hazard rate function. It
includes the odd Lindley distribution as a special case. Several statis-
tical properties of the distribution are explored, such as the density,
hazard rate, survival, quantile functions, and moments. Estimation us-
ing the maximum likelihood and inference of a random sample from
the distribution are investigated. A simulation study is performed to
compare the performance of the di�erent parameter estimates in terms
of bias and mean square error. Two real data applications are mod-
elled with the proposed distribution to illustrate the performance of
the new distribution. Based on goodness-of-�t statistics, the new dis-
tribution outperforms the generalized gamma, gamma Weibull, gamma
exponentiated exponential, generalized Lindley, Kumaraswamy Lind-
ley, and odd log-logistic Lindley distributions.
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1. Introduction

The statistical analysis and modeling of lifetime data are essential in almost all applied
sciences including, biomedical science, engineering, �nance, and insurance, amongst oth-
ers. A number of one-parameter continuous distributions for modeling lifetime data has
been introduced in statistical literature including exponential, Lindley, gamma, lognor-
mal, and Weibull. The exponential, Lindley and Weibull distributions are more popular
than the gamma and lognormal distributions because the survival functions of the gamma
and the lognormal distributions cannot be expressed in closed forms and both require
numerical integration. The Lindley distribution is a very well-known distribution that
has been extensively used over the past decades for modeling data in reliability, biology,
insurance, �nance, and lifetime analysis. It was introduced by Lindley (1958) to analyze
failure time data, especially in applications of modeling stress-strength reliability. The
motivation for introducing the Lindley distribution arises from its ability to model fail-
ure time data with increasing, decreasing, unimodal and bathtub shaped hazard rates.
It may also be mentioned that the Lindley distribution belongs to an exponential family
and it can be written as a mixture of an exponential and a gamma distributions. This
distribution represents a good alternative to the exponential failure time distributions
that su�er from not exhibiting unimodal and bathtub shaped failure rates (Bakouch et

al., 2012). The properties and inferential procedure for the Lindley distribution were
studied by Ghitany et al. (2008, 2011). They show via a numerical example that the
Lindley distribution gives better modelling than the one based on the exponential distri-
bution when hazard rate is unimodal or bathtub shaped. Furthermore, Mazucheli and
Achcar (2011) found that many of the mathematical properties are more �exible than
those of the exponential distribution and proposed the Lindley distribution as a possible
alternative to exponential or Weibull distributions.

The need for extended forms of the Lindley distribution arises in many applied areas.
The emergence of such distributions in the statistics literature is only very recent. For
some extended forms of the Lindley distribution and applications, the reader is referred
to Kumaraswamy Lindley (Cakmakyapan and Ozel, 2014), beta odd log-logistic Lind-
ley (Cordeiro et al., 2015), generalized Lindley (Nadarajah et al., 2011), quasi Lindley
distributions (Shanker and Mishra, 2013). The probability density function (pdf) and
cumulative density function (cdf ) of the Lindley distribution are, respectively, given by

(1.1) g (x;λ) =
λ2

1 + λ
(1 + x) e−λx, x > 0, λ > 0

(1.2) G (x;λ) = 1−
(

1 +
λx

1 + λ

)
e−λx, x > 0, λ > 0

It can be seen that this distribution is a mixture of Exponential (λ) and gamma (2,λ)
distributions. Having only one parameter, the Lindley distribution does not provide
enough �exibility for analyzing di�erent types of lifetime data. To increase the �exibility
for modelling purposes it will be useful to consider further alternatives to this distribution.
Our purpose is to provide a generalization that may be useful to still more complex
situations. Once the proposed distribution is quite �exible in terms of pdf and hazard rate
function (hrf), it may provide an interesting alternative to describe income distributions
and can also be applied in actuarial science, �nance, bioscience, telecommunications and
modelling lifetime data, for example. Therefore, the aim of this study is to introduce
a new distribution using the Lindley distribution. Recenlty, Alizadeh et al. (2016) has
introduced the OBu-G family with two extra shape parameters de�ned by cdf
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(1.3) F (x; a, b) = 1−
{

1− G(x)a

G(x)a + Ḡ(x)a

}b
, a, b > 0, x > 0

and the pdf

(1.4) f (x; a, b) =
a b g(x)G(x)a−1 Ḡ(x)a b−1[

G(x)a + Ḡ(x)a
]b+1

, a, b > 0, x > 0

where Ḡ (x) = 1−G (x).
The main aim of this paper is to provide an extension of the Lindley distribution.

Hence, we propose the Odd Burr Lindley (OBu-L for short) distribution by adding two
extra parameters to the Lindley distribution. The article is outlined as follows: In Section
2, we introduce the OBu-L distribution and provide plots of the density and hazard rate
functions. Shapes, quantile function, moments, and moment generating function are also
obtained. Estimation by the method of maximum likelihood and an explicit expression
for the observed information matrix are presented in Section 3. A simulation study is
conducted in Section 4. Applications to real data sets are considered in Section 5. Finally,
Section 6 o�ers some concluding remarks.

2. Main Properties

2.1. Probability Density and Cumulative Density Functions. Inserting (1.2) in
(1.3), the cdf of the OBu-L with three parameters (a, b, λ > 0) is de�ned as

(2.1) F (x; a, b, λ) = 1−

1−

[
1−

(
1 + λx

1+λ

)
e−λx

]a
[
1−

(
1 + λx

1+λ

)
e−λx

]a
+
[(

1 + λx
1+λ

)
e−λx

]a

b

The corresponding pdf of the OBu-L is given by

(2.2)

f (x; a, b, λ) = ab
(
λ2

1+λ
(1 + x) e−λx

)(
1−

(
1 + λx

1+λ

)
e−λx

)a−1

×
((

1 + λx
1+λ

)
e−λx

)ab−1

×
{[

1−
(

1 + λx
1+λ

)
e−λx

]a
+
[(

1 + λx
1+λ

)
e−λx

]a}−(b+1)

where λ is a scale parameter a and b are the shape parameters. Here, a and b
govern the skewness of (2.2). A random variable X with the pdf (2.2) is denoted by
X ∼ OBu− L (a, b, λ).

Some of the possible shapes of density function in (2.2) for the selected parameter
values are illustrated in Figure 1. As seen in Figure 1, the density function can take var-
ious forms depending on the parameter values. It is evident that the OBu-L distribution
is much more �exible than the Lindley distribution, i.e. the additional shape parame-
ter and

	
allow for a high degree of �exibility of the OBu-L distribution. Both unimodal

and monotonically decreasing and increasing shapes appear to be possible. Because of its
tractable distribution function (1.2), the OBu-L distribution can be used quite e�ectively
even if the data are censored.
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Figure 1. Plots of the pdf the OBu-L distribution for some parameter
values.

2.2. Survival and Hazard Rate Functions. Central role is played in the reliability
theory by the quotient of the pdf and survival function. We obtain the survival function
corresponding to (2.1) as

(2.3) S(x; a, b, λ) =

1−

[
1−

(
1 + λx

1+λ

)
e−λx

]a
[
1−

(
1 + λx

1+λ

)
e−λx

]a
+
[(

1 + λx
1+λ

)
e−λx

]a

b

In reliability studies, the hrf is an important characteristic and fundamental to the
design of safe systems in a wide variety of applications. Therefore, we discuss these
properties of the OBu-L distribution. The hrf of X takes the form

(2.4)

h (x; a, b, λ) = ab
(
λ2

1+λ
(1 + x) e−λx

)(
1−

(
1 + λx

1+λ

)
e−λx

)a−1

×
((

1 + λx
1+λ

)
e−λx

)ab−1[(
1 + λx

1+λ

)
e−λx

]−a
×
{[

1−
(

1 + λx
1+λ

)
e−λx

]a
+
[(

1 + λx
1+λ

)
e−λx

]a}−1

Plots for the hrf of the OBu-L distribution for several parameter values are displayed
in Figure 2, respectively. Figure 2 shows that the hrf of the OBu-L distribution can
have very �exible shapes, such as increasing, upside-down bathtub, and bathtub. This
attractive �exibility makes the hrf of the OBu-L distribution useful and suitable for
non-monotone empirical hazard behaviours which are more likely to be encountered or
observed in real life situations.
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Figure 2. Plots of the hrf of the OBu-L distribution for some param-
eter values.

2.3. Asymptotic.

2.1. Proposition. The asymptotics of cdf, pdf and hrf of the OBu-L distribution as

x→ 0 are, respectively, given by

F (x) ∼ b (λx)a as x→ 0,

f(x) ∼ a b λa xa−1 as x→ 0,

h(x) ∼ a b λa xa−1 as x→ 0.

2.2. Proposition. The asymptotics ofsurvival function, pdf and hrf of the OBu-L dis-

tribution as x→∞ are, respectively, given by

1− F (x) ∼ (
aλ

1 + λ
)b xb e−bλ x as x→∞,

f(x) ∼ b λ (
aλ

1 + λ
)b xb e−bλ x as x→∞,

h(x) ∼ bλ as x→∞.

Let us point out that these equations show the e�ect of parameters on tails of the
OBu-L distribution.
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2.4. Shapes. The density function of the OBu-L, given in (2.2), is decreasing, increasing
or unimodal. In order to investigate the critical points of its density function, the �rst
derivative of with respect to x is given by

(2.5)

d
dx
f(x) =

abrλ2(−(ab−1)λ−λ)(x+1)(keλx)ab−1
(1−k)a−1(ka+(1−k)a)−b−1

λ+1
+

arbλ2(keλx)ab−1
(1−k)a−1(ka+(1−k)a)−b−1

λ+1

+
abr(ab−1)λ3(x+1)(keλx)ab−2

(1−k)a−1(ka+(1−k)a)−b−1

λ+1
+

(a−1)abrλ2(x+1)(keλx)ab−1
(1−k)a−2(λk)(ka+(1−k)a)−b−1

λ+1

+

(
a(−b−1)bλ2(x+1)(keλx)ab−1

(1−k)a−1(ka+(1−k)a)−b−2

λ+1

)
×

r

(
−aλka + aλka

(keλx)−1

(λ+1)
+ a(1− k)a−1

(
λk − k−e−λx

x

))
where k = λx+λ+1

(λ+1)eλx
and r = e−(ab−1)λx−λx. There may be more than one root to

(2.5). If x = x0 is a root of (2.5), then it corresponds to a local maximum if df(x)/dx > 0
for all x < x0 and df(x)/dx < 0 for all x > x0. It corresponds to a local minimum if
df(x)/dx < 0 for all x < x0 and df(x)/dx > 0 for all x > x0. It corresponds to a point
of in�exion if either df(x)/dx > 0 for all x 6= x0 or df(x)/dx < 0 for all .

2.5. Extreme Value. If X1, ..., Xn is a random sample from (2.1) and if X̄ = (X1 +
... + Xn)/n denotes the sample mean then by the usual central limit theorem

√
n(X̄ −

E(X))/
√
Var(X) approaches the standard normal distribution as n → ∞. One may be

interested in the asymptotic of the extreme values Mn = max(X1, ..., Xn) and mn =
min(X1, ..., Xn). For (2.1), it can be seen that

lim
t→0

F (t x)

F (t)
= xa

and

lim
t→∞

1− F (t x)

1− F (t)
= e−a bλx.

Thus, it follows from Theorem 1.6.2 of Leadbetter et al. (1987) that there must be
norming constants an > 0, bn, cn > 0 and dn such that

Pr [an(Mn − bn) ≤ x]→ e−a bλx

and

Pr [an(mn − bn) ≤ x]→ 1− e−xa

as n→∞. Using Corollary 1.6.3 of Leadbetter et al. (1987), we can obtain the form of
normalizing constants an, bn, cn and dn.

2.6. Quantile Function. Let X ∼ OBu−L(a, b, λ) , the quantile function, say Q(p) ,
is de�ned by F (Q(p)) = p and the root of the following equation

[1 + λ+ λQ(p)] e−λQ(p) =
−(1 + λ)e−1−λ (1− p)

1
a b

(1− p) 1
a b +

[
1− (1− p) 1

b

] 1
a

(2.6)

for 0 < p < 1. Substituting Z(p) = −1− λ− λQ(p), one can write (2.6) as

Z(p) eZ(p) =
−(1 + λ)e−1−λ (1− p)

1
a b

(1− p)
1
a b +

[
1− (1− p)

1
b

] 1
a

(2.7)
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Hence, the equation of Z(p) is

Z(p) = W

 −(1 + λ)e−1−λ (1− p)
1
a b

(1− p) 1
a b +

[
1− (1− p) 1

b

] 1
a

(2.8)

where W (.) is the Lambert function (Corless et al., 1996). Inserting (1.2), we obtain,

Q(p) = −1− 1

λ
− 1

λ
W

 −(1 + λ)e−1−λ (1− p)
1
a b

(1− p) 1
a b +

[
1− (1− p) 1

b

] 1
a

(2.9)

The particular case of (2.9) when a = b = 1 has been derived recently Jorda (2010).
Here, we also propose di�erent algorithms for generating random data from the OBu-L
distribution as follows:

(a) The �rst algorithm is based on generating random data from the Lindley distri-
bution using the exponential gamma mixture.

Algorithm 1 (Mixture form of the Lindley distribution)
• Generate Ui ∼ Uniform(0, 1), i = 1, . . . , n;
• Generate Vi ∼ Exponential(λ), i = 1, . . . , n;
• Generate Wi ∼ Gamma(2, λ), i = 1, . . . , n;

• If

[
1−(1−Ui)

1
b

] 1
a

[
1−(1−Ui)

1
b

] 1
a

+(1−Ui)
1
a b

≤ λ
1+λ

setXi = Vi, otherwise, setXi = Wi, i =

1, . . . , n.
(b) The second algorithm is based on generating random data from the inverse cdf

in (2.1) of the OBu-L distribution.

Algorithm 2 (Inverse cdf)
• Generate Ui ∼ Uniform(0,1), i = 1, . . . , n;
• Set

Xi = −1− 1

λ
− 1

λ
W

 −(1 + λ) e−1−λ (1−Ui)
1
a b

(1− Ui)
1
a b +

[
1− (1− Ui)

1
b

] 1
a

 , i = 1, . . . , n.

2.7. Expansions. In this subsection, we provide alternative mixture representations
for the pdf and cdf of X. Despite the fact that the pdf and cdf of OBu-L require math-
ematical functions that are widely available in modern statistical packages, frequently
analytical and numerical derivations take advantage of power series for the pdf. Some
useful expansions for (2.2) can be derived by using the concept of power series. We obtain
the cdf of the OBu-L distribution as

F (x) = 1−
∞∑
i=0

(−1)i
G(x)ai[

G(x)a + Ḡ(x)a
]i

and we get

G(x)ai[
G(x)a + Ḡ(x)a

]i =

∞∑
k=0

αkG(x)k

∞∑
k=0

βkG(x)k
=

∞∑
k=0

γkG(x)k
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where αk =
∞∑
j=k

(−1)j+k
(
ai
j

)(
j
k

)
,
[
G(x)a + Ḡ(x)a

]i
=
∞∑
k=0

βkG(x)k, and βk =

hk (α, i) which is de�ned in Appendix A, γ0 = α0
β0

and for k > 1 we have γk =

β−1
0

[
αk − β−1

0

k∑
r=1

βrγk−r

]
. Then, we can write

F (x) = 1−
∞∑

i,k=0

(−1)iγk(a, i)G(x)k

= 1−
∞∑
k=0

a∗kG(x)k =
∞∑
k=0

b∗kG(x)k

where a∗k =
∞∑
i=0

(−1)iγk(α, i) , b∗0 = 1− a∗0, and b∗k = −a∗k for k > 1

Then, we obtain

F (x) =

∞∑
k=0

b∗kG(x)k =

∞∑
k=0

b∗kHk(x)

and

f(x) =

∞∑
k=0

b∗k+1hk+1(x)

where Hk(x) denote the cdf of the generalized Lindley with parameters λ and k.

2.8. Moments and Moment Generating Function. Some of the most important
features and characteristics of a distribution can be studied through moments (e.g. ten-
dency, dispersion, skewness and kurtosis). Now, we obtain ordinary moments and the
moment generating function of the OBu-L distribution. Nadarajah et al. (2011) de�ned
and computed

(2.10) A (a, b, c, δ) =

∫ ∞
0

xc (1 + x)

[
1−

(
1 +

bx

b+ 1

)
e−bx

]a−1

e−δxdx

which can be used to produce ordinary moments µ′r. Then, we have

(2.11) A (a, b, c, δ) =

∞∑
i=0

i∑
j=0

j+1∑
k=0

(
a− 1
i

)(
i
j

)(
j + 1
k

)
(−1)ibjΓ (k + c+ 1)

(i+ b)i(bi+ δ)c+k+1

From (2.10) and (2.11), we obtain

(2.12) µ′r = E [Xr] =
λ2

1 + λ

∞∑
k=0

(k + 1)b∗k+1A (k + 1, λ, r, λ)

The ordinary moments of the OBu-L distribution can be calculated directly from (2.12).
We now provide a formula for the conditional moments of the OBu-L distribution.
Nadarajah et al. (2011) de�ned and computed the following equation for the condi-
tional moments

(2.13) L (a, b, c, δ, t) =

∫ ∞
t

xc (1 + x)

[
1−

(
1 +

bx

b+ 1

)
e−bx

]
e−δxdx

From (2.13), we have
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(2.14) L(a, b, c, δ, t) =
∞∑
i=0

i∑
j=0

j+1∑
k=0

(
a− 1
i

)(
i
j

)(
j + 1
k

)
(−1)ibjΓ(k+c+1),(bi+δ)t

(i+b)i(bi+δ)c+k+1

where

(2.15) Γ (a, x) =

∫ ∞
x

ta−1e−tdt

denotes the incomplete gamma function. Using (2.13) and (2.14), we obtain

µ′r(t) = E [Xr|X > t] =
λ2

1 + λ

∞∑
k=0

(k + 1)b∗k+1L (k + 1, λ, r, λ, t) .(2.16)

The moment generating function (mgf) of a random variable provides the basis of an
alternative route to analytical results compared with working directly with its pdf and
cdf. From (2.11) and (2.12), we obtain

MX(t) = E
[
et X
]

=
λ2

1 + λ

∞∑
k=0

(k + 1)b∗k+1A (k + 1, λ, r, λ− t) .

The central moments µn and cumulants of the OBu-L distribution are easily obtained
as

µn =
n∑
k=0

(−1)k
(
n
k

)
µ′1
kµ′n−kκn = µ′n −

n−1∑
k=1

(
n− 1
k − 1

)
κkµ

′
n−k

respectively, where κ1 = µ′1, κ2 = µ′1
2
, κ3 = µ′3 − 3µ′2µ

′
1 + 2µ′2

3
etc.

Skewness measures the degree of the long tail and kurtosis is a measure of the degree
of tail heaviness. For the OBu-L distribution, The skewness can be computed by using
quantile function in (2.9) as

S =
Q (3/4)− 2Q (1/2) +Q (1/4)

Q (3/4)−Q (1/4)

and the kurtosis is based on octiles as

K =
Q (7/8)−Q (5/8) +Q (3/8)−Q (1/8)

Q (6/8)−Q (2/8)

where Q(.) represents the quantile function. When the distribution is symmetric
S = 0, and when the distribution is right (or left) skewed S > 0(orS < 0). As K in-
creases, the tail of the distribution becomes heavier. These measures are less sensitive to
outliers and they exist even for distributions without moments.
We present �rst four ordinary moments, skewness and kurtosis of the OBu-L distribution
for various values of parameters in Table 1.
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Table 1. Moments, skewness, and kurtosis of the OBu-L distribution
for the some parameter values.

λ α β µ
′
1 µ

′
2 µ

′
3 µ

′
3 Skewness Kurtosis

0.5 0.5 0.5 9.608 186.867 5072 174430.543 1.585 6.540
0.5 0.5 1 4.590 49.133 746.891 14423.521 1.725 6.981
0.5 0.5 2 1.930 11.191 98.319 1112.495 2.178 8.656
0.5 0.5 5 0.458 0.900 3.133 15.072 3.501 20.257
0.5 1 0.5 5.892 58.476 809.578 14397.400 1.638 7.134
0.5 1 1 3.335 18.665 144.665 1419.200 1.469 6.089
0.5 1 2 1.898 6.026 25.882 138.923 1.436 5.878
0.5 1 5 0.893 1.373 2.860 7.364 1.395 5.524
0.5 2 0.5 4.142 23.196 170.857 1607.500 1.653 7.614
0.5 2 1 2.865 10.222 44.055 226.993 1.068 5.076
0.5 2 2 2.117 5.350 15.520 50.655 0.625 3.893
0.5 2 5 1.457 2.487 4.749 9.900 0.322 3.015

Table 1 reveals that for α < 1 , kurtosis and skewness increase when β increases. For
α ≥ 1, the kurtosis and skewness decrease when β increases. Plots for skewness and
kurtosis are presented in Figure 3.

Figure 3. Plots of Galton skewness and Moor kurtosis of OBu-L dis-
tribution for several values of parameters.

3. Estimation

Several approaches for parameter estimation have been proposed in the literature but
the maximum likelihood method is the most commonly employed. Here, we consider
estimation of the unknown parameters of the OBu-L distribution by the method of max-
imum likelihood. Let x1, x2, ..., xn be observed values from the OBu-L distribution with
parameters a, b and λ . The log-likelihood function for (a, b, λ) is given by
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ln = n log

(
a b λ2

1 + λ

)
+

n∑
i=1

log(1 + xi)− λ
n∑
i=1

xi + (a− 1)

n∑
i=1

log(ti))

+ (a b− 1)

n∑
i=1

log(1− ti))− (b+ 1)

n∑
i=1

log [tai + (1− ti)a](3.1)

where ti = 1 −
(

1 + λxi
1+λ

)
e−λxi . The derivatives of the log-likelihood function with

respect to the parameters a, b and λ are given by, respectively,

∂ln
∂a

=
n

a
+

n∑
i=1

log(ti) + b

n∑
i=1

log(1− ti),

− (b+ 1)
n∑
i=1

tai log(ti) + (1− ti)a log(1− ti)
tai + β(1− ti)a

∂ln
∂b

=
n

b
+ a

n∑
i=1

log(1− ti)−
n∑
i=1

log [tai + (1− ti)a]

and

∂ln
∂λ

=
2n

λ
− n

1 + λ
−

n∑
i=1

xi + (a− 1)

n∑
i=1

t
(λ)
i

ti
+ (1− a b)

n∑
i=1

t
(λ)
i

1− ti

−a(b+ 1)

n∑
i=1

t
(λ)
i

ta−1
i − (1− ti)a−1

tai + (1− ti)a
.

where t
(λ)
i = λxi(1+xi)e

−λxi

(1+λ)2
.

The maximum likelihood estimates (MLEs) of ( a, b, λ) , say
(
â, b̂, λ̂

)
, are the si-

multaneous solutions of the equations ∂`n
∂a

= 0, ∂`n
∂b

= 0, ∂`n
∂λ

= 0. Note that the MLE
has second derivatives with respect to the parameters, so that Fisher information matrix
(FIM), Iij(θ) can be expressed as

Iij(θ) = E(
∂2`(θ;X1, ..., Xn)

∂θi∂θj
, i, j = 1, 2, 3

The elements of the information matrix is given in Appendix B. The total FIM In(θ)
can be approximated by

(3.2) Jn(θ̂) =
∂2`(θ;X1, ..., Xn)

∂θi∂θj

∣∣∣∣
θ=θ̂

, i, j = 1, 2, 3.

For real data, the matrix is obtained after the convergence of the Newton-Raphson

procedure in R software. Let θ̂ = (â, b̂, λ̂) be the MLE of θ = (a, b, λ) . Under the
usual regularity conditions and that the parameters are in the interior of the parameter

space, but not on the boundary, we have:
√
n(θ̂ − θ)→ N3(0, I−1(θ)) , where I(θ) is the

expected FIM. The asymptotic behaviour is still valid if I(θ) is replaced by the observed

information matrix evaluated at θ̂ , that is J(θ̂) . The multivariate normal distribution
with mean vector 0 = (0, 0, 0)T and covariance matrix I−1(θ) can be used to construct
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con�dence intervals for the model parameters. That is, the approximate 100(1 − η)
percent two-sided con�dence intervals for a, b and λ are given by

â± Z η
2

√
I−1
aa (θ̂)

b̂± Z η
2

√
I−1
bb (θ̂)

λ̂± Z η
2

√
I−1
λλ (θ̂)

respectively, where Iaa
−1(θ̂) ,Ibb

−1(θ̂) , Iλλ
−1(θ̂) are diagonal elements of In

−1(θ) =

(nIn(θ̂))−1 and Zn
2
is the upper n

2
th percentile of a standard normal distribution.

Note that parameter estimation become complicated when censoring is present in the
sample. Some time it is not possible to give a mathematical expression of estimated
values of parameters in maximum likelihood method.

4. Simulation

In this section, we evaluate the performance of the MLEs of the parameters of OBu-L
model by means of a simulation study. R software is used for simulation study and real
data modelling. Inverse transform algorithm is used to generate random data from the
OBu-L distribution. The used algorithm can be found in Section 2.5. We generated
samples of sizes n = 50, 100, 500 and 1000 from the OBu-L model for di�erent parameter
combinations. We computed mean square error (MSE) of parameter estimations, esti-
mated average length (AL) and coverage probability (CP) and this procedure is repeated

1000 times. Let
(
â, b̂, λ̂

)
be the MLEs of the parameters of the OBu-L and

(
sâi , sb̂i , sλ̂

)
be the standard errors of MLEs, the estimated MSEs, AL and CP can be estimated by
using following equations:

MSEε (n) =

N∑
i=1

(ε̂i−ε)

N

ALε (n) =
N∑
i=1

(sε̂i)
3.919928

N

CPε (n) = 1
N

N∑
i=1

I (ε̂i − 1.9599sε̂i , ε̂i − 1.9599sε̂i)

The simulation results are given in Table 2. The values in Table 2 indicate that the
estimates are quite stable and, more importantly, are close to the true parameter values
for these sample sizes. From Table 2, it is observed that in general MSE decreases as
n increases. The simulation study also shows that the maximum likelihood method is
appropriate for estimating the OBu-L parameters. In fact, the MSEs of the parameters
tend to be closer to zero when n increases. This fact supports that the asymptotic normal
distribution provides an adequate approximation to the �nite sample distribution of the
MLEs. The normal approximation can be oftentimes improved by using bias adjustments
to these estimators. The coverage probability is near to 0.95. When the sample size
increases, coverage probability approaches to nominal value and average length decreases
for all cases.



267

T
a
b
le
2
.

M
S
E
s
a
n
d
m
ea
n
s
o
f
th
e
es
ti
m
a
te
d
p
a
ra
m
et
er
s
o
f
th
e
O
B
u
-L

d
is
tr
ib
u
ti
o
n
fo
r
se
v
er
a
l
va
lu
es
.

M
ea
n

M
S
E

A
L

C
P

λ
α

β
n

la
m
bd
a

α
β

λ
α

β
λ

α
β

λ
α

β

0
.5

0
.5

0
.5

5
0

0
.6

0
4

0
.5

1
3

0
.6

9
9

0
.2

6
0

0
.0

1
1

0
.5

4
3

1
.2

4
4

0
.3

7
2

1
.5

1
2

0
.8

0
2

0
.8

9
2

0
.8

6
6

1
0
0

0
.6

0
1

0
.4

9
6

0
.6

4
8

0
.1

4
7

0
.0

0
5

0
.1

2
5

0
.9

9
4

0
.2

6
8

1
.2

9
3

0
.8

3
7

0
.8

7
9

0
.8

7
8

2
5
0

0
.5

3
0

0
.5

0
1

0
.5

9
4

0
.0

3
5

0
.0

0
2

0
.0

5
2
1

0
.6

6
9

0
.1

8
1

0
.7

1
2

0
.9

3
2

0
.9

3
4

0
.9

3
4

5
0
0

0
.5

1
4

0
.5

0
0

0
.5

1
4

0
.0

1
5

0
.0

0
1

0
.0

1
4

0
.4

5
9

0
.1

2
8

0
.4

4
7

0
.9

2
6

0
.9

3
8

0
.9

4
0

1
0
0
0

0
.4

9
8

0
.5

0
0

0
.5

1
2

0
.0

0
6

0
.0

0
0
5

0
.0

0
5

0
.3

1
3

0
.0

9
0

0
.3

1
3

0
.9

3
6

0
.9

4
0

0
.9

4
6

0
.5

0
.5

2
5
0

0
.7

2
6

0
.4

9
1

3
.7

6
4

0
.5

6
3

0
.0

0
3

1
.2

5
5

1
.8

8
6

0
.2

5
3

1
.3

4
7

0
.9

2
3

0
.9

4
8

0
.8

5
6

1
0
0

0
.5

7
6

0
.4

9
4

3
.8

2
1

0
.1

1
3

0
.0

0
1

0
.9

5
3

1
.1

3
8

0
.1

7
2

0
.7

5
9

0
.9

2
2

0
.9

5
5

0
.8

8
2

2
5
0

0
.5

3
9

0
.4

9
6

2
.5

8
2

0
.0

4
4

0
.0

0
0
7

0
.1

2
5

0
.7

2
8

0
.1

0
8

0
.5

4
4

0
.9

3
8

0
.9

5
6

0
.9

0
8

5
0
0

0
.5

1
9

0
.4

9
9

2
.2

3
3

0
.0

1
9

0
.0

0
0
3

0
.0

2
5

0
.5

0
6

0
.0

7
4

0
.2

1
9

0
.9

4
2

0
.9

5
6

0
.9

2
4

1
0
0
0

0
.5

0
6

0
.4

9
9

2
.0

4
1

0
.0

0
9

0
.0

0
0
1

0
.1

0
9

0
.3

5
1

0
.0

5
1

0
.1

0
3

0
.9

4
2

0
.9

5
4

0
.9

3
6

0
.5

3
2

5
0

0
.4

3
6

3
.1

8
3

2
.9

0
9

0
.0

3
1

0
.3

9
5

0
.9

4
4

0
.6

2
3

2
.1

9
4

1
.2

6
8

0
.8

9
7

0
.9

4
8

0
.8

6
2

1
0
0

0
.4

5
9

3
.0

3
4

2
.8

8
3

0
.0

1
5

0
.1

3
5

0
.7

5
1

0
.3

9
7

1
.4

3
9

1
.0

5
1

0
.9

2
9

0
.9

5
6

0
.9

0
5

2
5
0

0
.4

8
8

3
.0

2
1

2
.5

1
2

0
.0

0
3

0
.0

5
4

0
.4

9
2

0
.2

0
1

0
.9

0
9

0
.9

0
9

0
.9

3
8

0
.9

5
4

0
.9

3
4

5
0
0

0
.4

9
1

2
.9

9
8

2
.3

0
5

0
.0

0
1

0
.0

2
8

0
.3

3
7

0
.1

3
4

0
.6

3
1

0
.8

8
5

0
.9

4
8

0
.9

4
6

0
.9

4
5

1
0
0
0

0
.4

9
8

3
.0

1
2

2
.0

8
6

0
.0

0
0
6

0
.0

1
2

0
.2

7
1

0
.0

8
9

0
.4

5
0

0
.6

4
6

0
.9

5
1

0
.9

5
0

0
.9

4
6

0
.5

2
.5

1
.5

5
0

0
.4

4
1

2
.6

7
3

1
.9

9
4

0
.0

2
5

0
.1

9
9

0
.9

4
1

0
.6

9
4

1
.5

4
1

1
.5

5
7

0
.9

2
2

0
.9

3
5

0
.8

9
5

1
0
0

0
.4

7
2

2
.5

4
7

1
.8

6
3

0
.0

1
2

0
.1

1
5

0
.7

6
6

0
.3

9
3

1
.2

9
6

1
.2

3
5

0
.9

4
1

0
.9

4
1

0
.9

1
9

2
5
0

0
.4

8
6

2
.5

2
5

1
.6

7
7

0
.0

0
4

0
.0

4
6
1

0
.3

5
5

0
.2

1
6

0
.8

0
0

0
.9

4
4

0
.9

4
6

0
.9

4
4

0
.9

4
2

5
0
0

0
.4

9
6

2
.5

1
1

1
.6

0
3

0
.0

0
1

0
.0

1
8

0
.1

9
6

0
.1

4
2

0
.5

5
8

0
.6

5
3

0
.9

4
8

0
.9

5
0

0
.9

4
5

1
0
0
0

0
.4

9
8

2
.5

0
6

1
.5

5
1

0
.0

0
0
7

0
.0

1
1

0
.0

9
7

0
.0

9
8

0
.3

9
2

0
.4

7
2

0
.9

5
8

0
.9

5
4

0
.9

5
2



268

Table 3. Fitted distributions and their abbreviations.

Distribution Abbreviation References

Odd Burr Lindley OBu-L Proposed
Generalized Gamma GG Stacy (1962)
Gamma Weibull GW Provost et al. (2011)
Gamma Exponentiated Exponential GEE Ristic and Balakrishnan (2012)
Generalized Lindley GL Nadarajah et al. (2011)
Kumaraswamy Lindley KL Cakmakyapan and Ozel (2014)
Odd Log-logistic Lindley OLL-L Ozel et al. (Accepted)

5. Applications

In this section, real data modeling performance of the OBu-L distribution is compared
with several well-known distributions given in Table 3.

We used the uncensored real data set on the breaking stress of carbon �bers as reported
in Nichols and Padgett (2006). The data set contains 66 observations and is given in
Table 4.

Table 4. Carbon Fibers Data Set.

3.7 2.74 2.73 2.5 3.6 3.11 3.27 2.87 1.47 3.11 3.56 4.42 2.41 3.19 3.22
1.69 3.28 3.09 1.87 3.15 4.9 1.57 2.67 2.93 3.22 3.39 2.81 4.2 3.33 2.55
3.31 3.31 2.85 1.25 4.38 1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.7 2.03 1.89
2.88 2.82 2.05 3.65 3.75 2.43 2.95 2.97 3.39 2.96 2.35 2.55 2.59 2.03 1.61
2.12 3.15 1.08 2.56 1.8 2.53

Table 5 gives Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC), and log-likelihood (−`) values for the all �tted distributions. Based on Table 5,
it is clear that the OBu-L distribution provides the overall best �t and therefore could
be chosen as the more adequate model from other models for explaining the data set.

Table 5. The MLEs, standard errors and the goodness-of-�t statistics
for the �rst application.

Model ParameterEstimates AIC BIC −`
GG(k, λ, ξ) 4.073 3.346 3.092 177.83 184.404 85.917

GW (k, ξ, λ) 3.441 1.6 ∗ 10−7 3.062 178.135 184.704 86.067

GEE(λ, α, δ) 0.265 10.036 7.237 189.787 196.356 91.894

GL(α, λ) 7.035 7.035 �� 191.594 195.973 93.797

KL(α, β, λ) 4.662 4.111 0.689 183.110 189.679 88.550

OLL− L(α, λ) 2.965 0.488 �� 179.991 184.372 87.996

OBu− L(µ, σ, α, β) 2.453 5.383 0.318 177.151 183.720 85.575

More information can be provided in Figure 4 by a histogram of the data with �tted
lines of pdfs for all distributions. Figure 4 also suggests that the OBu-L distribution �ts
unimodal data very well. Figure 5 displays plots of the �tted density, cumulative and
survival functions with probability-probability (P-P) plot for the OBu-L model. It is clear
that the OBu-L distribution provides better �tting performance than other distributions.
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Figure 4. Fitted densities of distributions for �rst data set.
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Figure 5. Plots for �tted functions of the OBu-L model for �rst data set.
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The second data set consists of 63 observations of the strengths of 1.5 cm glass �bers,
originally obtained by workers at the UK National Physical Laboratory. The data set is
given in Table 6.

Table 6. Strengths of 1.5 cm Glass Fibers.

0.55 0.74 0.77 0.81 0.84 0.93 1.04 1.11 1.13 1.24
1.25 1.27 1.28 1.29 1.3 1.36 1.39 1.42 1.48 1.48
1.49 1.49 1.5 1.5 1.51 1.52 1.53 1.54 1.55 1.55
1.58 1.59 1.6 1.61 1.61 1.61 1.61 1.62 1.62 1.63
1.64 1.66 1.66 1.66 1.67 1.68 1.68 1.69 1.7 1.7
1.73 1.76 1.76 1.77 1.78 1.81 1.82 1.84 1.84 1.89
2 2.01 2.24

Table 7. The MLEs, standard errors and the goodness-of-�t statistics
for the second application.

Model ParameterEstimates AIC BIC −`
GG(k, λ, ξ) 4.911 1.577 5.462 37.836 44.266 15.910

GW (k, ξ, λ) 4.428 2.236 1.458 38.836 45.265 16.419

GEE(λ, α, δ) 1.342 17.287 2.901 60.503 66.932 27.244

GL(α, λ) 13.575 2.528 �� 69.725 74.011 32.829

KL(α, β, λ) 6.269 4.069 1.340 60.887 67.317 27.407

OLL− L(α, λ) 4.611 0.793 �� 44.484 48.770 20.220

OBu− L(µ, σ, α, β) 4.031 8 0.579 35.340 41.770 14.670

Based on Table 7, the OBu-L distribution provides better �tting performance than
other distributions according to information criteria. Therefore, the OBu-L could be
chosen as the more adequate model from other models for explaining the second data set
and also more information can be provided in Figure 6 by a histogram of the data with
�tted lines of pdfs for all distributions. Figure 7 shows the plots of the �tted density,
cumulative and survival functions with P-P plot for the OBu-L model.
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Figure 6. Fitted densities of distributions for the second data set.
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Figure 7. Plots for �tted functions of the OBu-L model for the second
data set.
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6. Conclusion

In this study, a new three-parameter distribution is introduced. A characteristic of
the OBu-L distribution is that its hrf can be increasing, bathtub-shaped, and unimodal
depending on its parameter values. Several properties of the new distribution such as
pdf, hrf, and moments are obtained. The MLE procedure is presented. Real data ap-
plications and a simulation study indicate the �exibility and capacity of the proposed
distribution in data modeling. The new model provides consistently a better �t than the
other models, namely: Generalized Gamma, Gamma Weibull, Gamma Exponentiated
Exponential, Generalized Lindley, Kumaraswamy Lindley, and Odd Log-logistic Lindley
distributions. In view of the density function and hrf shapes, it seems that the proposed
model can be considered as a suitable candidate model in reliability analysis, biological
systems, data modeling, and related �elds.

In many practical applications, the lifetimes are a�ected by explanatory variables such
as the cholesterol level, blood pressure, weight and many others. Parametric models to
estimate univariate survival functions for censored data regression problems are widely
used. A parametric model that provides a good �t to lifetime data tends to yield more
precise estimates of the quantities of interest. Therefore, we are planing to extend this
study for censored data sets in future.

Appendix A: Three useful power series

First, expanding zλ in Taylor series, we can write

(6) zλ =
∑∞
k=0(λ)k (z − 1)k/k! =

∑∞
i=0 fi z

i

where

(7) fi = fi(λ) =

∞∑
k=i

(−1)k−i

k!

(
k

i

)
(λ)k

and (λ)k = λ(λ− 1) . . . (λ− k + 1) denotes the descending factorial.
Second, we obtain an expansion for [G(x)a+ Ḡ(x)a]c. We can write from equation (6)

and (7)

(8) [G(x)a + Ḡ(x)a] =

∞∑
j=0

tj G(x)j ,

where tj = tj(a) = aj(a) + (−1)j
(
a
j

)
and aj(a) is de�ned by (7). Then, using (8), we

have

[G(x)a + Ḡ(x)a]c =

∞∑
i=0

fi

(
∞∑
j=0

tj G(x)j
)i
,

where fi = fi(c).
Finally, using again equations (7) and (8), we have

[G(x)a + Ḡ(x)a]c =

∞∑
j=0

hj(a, c)G(x)j ,

where hj(a, c) =
∑∞
i=0 fimi,j and (for i ≥ 0)mi,j = (j t0)−1∑j

m=1[m(j+1)−j] tmmi,j−m

(for j ≥ 1) and mi,0 = ti0.
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Appendix B

Here, we provide formulas for the second-order partial derivatives of the log-likelihood
function. After some algebraic manipulations, we obtain

∂2
n

∂a2
=
−n
a2
− (b+ 1)

n∑
i=1

tai [log(ti)]
2 + (1− ti)a [log(1− ti)]2

tai + (1− ti)a

+(b+ 1)

n∑
i=1

[
tai log(ti) + (1− ti)a log(1− ti)

tai + (1− ti)a

]2

∂2
n

∂a∂b
=

n∑
i=1

log(ti)−
n∑
i=1

tai log(ti) + (1− ti)a log(1− ti)
tai + (1− ti)a

∂2
n

∂a∂λ
=

n∑
i=1

t
(λ)
i

ti
− b

n∑
i=1

t
(λ)
i

1− ti

−(b+ 1)

n∑
i=1

t
(λ)
i

tai [1 + a log(ti)] + (1− ti)a [1 + a log(1− ti)]
tai + (1− ti)a

∂2
n

∂b2
=
−n
b2

∂2
n

∂b∂λ
= −a

n∑
i=1

t
(λ)
i

1− ti
− a

n∑
i=1

t
(λ)
i

ta−1
i − (1− ti)a−1

tai + (1− ti)a
to

∂2
n

∂λ2
=
−2n

λ2
+

n

(1 + λ)2
+ (a− 1)

n∑
i=1

t
(λλ)
i ti −

[
t
(λ)
i

]2
t2i

+(1− a b)
n∑
i=1

t
(λλ)
i (1− ti) +

[
t
(λ)
i

]2
(1− ti)2

−a(b+ 1)

n∑
i=1

t
(λλ)
i

ta−1
i − (1− ti)a−1

tai + (1− ti)a

−a(a− 1)(b+ 1)

n∑
i=1

t
(λλ)
i

ta−2
i + (1− ti)a−2

tai + (1− ti)a

+a2 (b+ 1)
n∑
i=1

[
t
(λ)
i

ta−1
i − (1− ti)a−1

tai + (1− ti)a

]2

(6.-15)

where

t
(λ)
i =

λxi (1 + xi) e
−λxi

(1 + λ)2

t
(λλ)
i =

λxi (1 + xi) [1− λ− λ(1 + λ)xi]
−λ xi
e

(1 + λ)3
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