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Research Article

Abstract − This study presents a new approach to the axiomatic characterization of the
interval Shapley value. This approach aims to improve our comprehension of the particular
characteristics of the interval Shapley value in a provided context. Furthermore, the research
contributes to the related literature by expanding and applying the fundamental axiomatic
principles used to define the interval Shapley value. The proposed axioms encompass
symmetry, gain-loss, and differential marginality, offering a distinctive framework for
understanding and characterizing the interval Shapley value. Through these axioms, the
paper examines and interprets the intrinsic properties of the value objectively, presenting
a new perspective on the interval Shapley value. The characterization highlights the
importance and distinctiveness of the interval Shapley value.

Keywords Cooperative interval games, uncertainty, interval Shapley value, axiomatic characterization
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1. Introduction

The Shapley value, first introduced by Shapley [1] in 1953, is a significant solution concept in
cooperative game theory. Over the years, the Shapley value has developed substantially and become
a captivating concept. Originally devised for cooperative games with transferable utility (TU games),
which involve a finite set of players and real-numbered coalition values, the Shapley value has not
only sustained its significance but has also undergone substantial development over the years. This
concept is a foundational framework for equitable reward or cost allocation. It transcends its initial
mathematical underpinnings and finds applications across diverse disciplines, such as operations
research (OR), economics, sociology, and computer science [2]. It delves into the intricacies of complex
problems related to reward and cost-sharing, offering a nuanced approach to evaluating contributions
within coalitions.

In many real-world situations, the intricacies that arise from interactions between individuals and
organizations require modeling. Game theory is valuable for comprehending and analyzing complex
situations within a rigorous mathematical framework. Consider the dynamics between two companies
operating in a competitive market. Each company aims to increase its market share and maximize
profitability. However, each company’s decisions are inevitably influenced by the strategies employed
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by the others. If a company chooses to reduce its prices, the other may follow suit, potentially affecting
the profitability of both businesses. Game theory can be utilized to model and analyze competitive
market dynamics, an instance of resource sharing within a group. When a group must distribute
a limited resource, everyone naturally tries to protect their interests. For example, when a team
decides on project roles, each member aims to maximize their skills and contributions. However,
game theory can facilitate finding an optimal solution and achieving equilibrium among competing
interests. These examples highlight the broad range of situations where game theory can be applied.
Nevertheless, individuals frequently encounter interval uncertainty, providing a new perspective on
cooperative interval games. Particularly, it addresses scenarios where individuals or companies
consider collaboration and need to formalize a contract. In such cases, it is difficult to determine
exact coalition payoffs, and only the minimum and maximum values can be clearly defined with
certainty.

Each cooperative interval game represents an interval payoff, the interval Shapley value. This value
holds significant influence as an interval solution concept in cooperative interval game theory,
particularly in real-world applications and OR situations. It is characterized by the special subclass of
cooperative interval games. This paper aims to present a novel axiomatic approach to characterizing
the interval Shapley value, which does not rely on additivity or marginality but instead incorporates
interval data. This paper explores the interval Shapley value and its axiomatic characterizations
within cooperative interval games, drawing inspiration from [3]. Several characterizations of the
interval Shapley value and grey Shapley value can be found in the literature, as documented in [4–7].
Numerous studies have been conducted on the Shapley value. For example, [1] uses the axioms
of additivity (ADD), efficiency (EFF), symmetry (SYM), and the null player property (NULL). [8]
characterizes the Shapley value by using EFF, SYM, and strong monotonicity property (SMON). As
characterized by [3], the Shapley value uses a new axiom called coalitional strategic equivalence (CSE).
Moreover, numerous characterizations of the Shapley value can be found in the literature [9–12].

The manuscript aims to present an innovative axiomatic characterization of the interval Shapley
value. Departing from the conventional reliance on additivity and marginality, this characterization
introduces a novel approach using (a specific concept) to establish a new perspective. The research
deals with Shapley value and its axiomatic characterizations, inspired by the scientific contributions
of [3]. The motivation behind characterization is to redefine a value using different axioms. By using
a specific set of principles based on Gain-Loss, differential marginality, and symmetry axioms, we can
redefine the Shapley value in a way that is different from existing characterizations. These selected
principles enhance our approach’s originality and provide a unique perspective for understanding
cooperative game theory. The selection of these axioms strengthens the innovative nature of our work,
deviating from traditional frameworks and presenting a novel conceptualization of the Shapley value.
The conscious choice of Gain-Loss, differential marginality, and symmetry as guiding principles set our
characterization apart from conventional approaches, contributing a new and distinctive viewpoint to
the ongoing discourse surrounding the Shapley value. In essence, axiomatic characterization aims to
provide an interval value by introducing a different point of view through specific axioms. These axioms
serve as tools to analyze the characterization. As a result, we derive new interval properties and define
this value with particular characteristics. In this study, we propose a new alternative characterization.
The rest of the paper is organized as follows. Section 2 provides basic information and materials
on cooperative and interval game theory. In Section 3, the interval Shapley value is characterized
axiomatically with the axioms of gain-loss, differential marginality, and symmetry axioms with interval
data. We conclude our paper by offering a comprehensive evaluation with potential perspectives for
future studies.
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2. Preliminaries

A coalition game in coalition form is represented by an ordered pair ⟨N, v⟩ where N is the set of
players and v : 2N → R is the characteristic function. The set 2N denotes the set of all the subsets
of N , each element of which is referred to as a coalition. A coalition game in coalition form is often
employed as a TU game. GN denotes the cooperative players in coalition form. The characteristic
function of a game, denoted as v ∈ GN , assigns the payoff v(S) to each coalition S ∈ 2N . Throughout
this study, the notation ‘s’ represents the cardinality of the coalition S instead of the notation |S| for
the number of elements in S.

Example 2.1. Let N = {1, 2, 3} denote the set of players. Players 1 and 2 want to produce left
gloves, while Player 3 wants to produce right gloves. The game’s contribution is zero when producing
only left or only right gloves, and it is 30 units when producing gloves together. This situation can be
represented by the game ⟨N, v⟩. Here, the characteristic functions can be formulated as follows:

v(∅) = 0

v(1) = v(2) = v(3) = v(12) = 0

v(13) = v(23) = v(N) = 30

Shapley value, one of the key concepts in cooperative game theory, will be discussed. Single-point
solutions are represented through the transformation f : GN → R [13, 14].

Definition 2.2. The Shapley value of a cooperative game, denoted as v ∈ GN , is articulated through
the mapping f : GN → R. Specifically, the Shapley value for player i is expressed as:

fi(v) =
∑
i∈S

∆v(s)
s

In this context, the term ∆v(s) =
∑

T ⊆S(−1)s−tv(T ) embodies the concept of marginal contribution,
a measure originally delineated by [15]. The Shapley value provides a fair allocation of the total payoff
among players by considering all possible permutations of players and their contributions within
coalitions. The set of all the games are (2|N | − 1)- dimensional linear space where unanimity games
form a basis. The unanimity game with the coalition of S, uS : 2N → R is defined by

uS(T ) =
{

1, S ⊆ T

0, otherwise

for S ∈ 2N \ {∅}. For more details, see [16].

This section provides an overview of the historical background for cooperative interval games [17–19].
An interval game is defined by < N, w >. Here, N = {1, 2, · · · , n} is the set of players, and the
characteristic function is w : 2N → I(R) where I(R) is the set of all the closed intervals in R. The
interval set w(S) has form [w(S), w(S)] for each coalition S ∈ 2N where w(S) is the lower value and
w(S) is the upper value. We denote the set of all the interval games with the player set N by IGN .

We use another subtraction operator different from Moore’s subtraction operator for this study [20].
We define I − J , only when |I| ≥ |J |, as I − J =

[
I − J, I − J

]
where I − J ≤ I − J . It is noted that

I is weakly superior to J , denoted by I ≽ J , if and only if I ≥ J and I ≥ J . For w1, w2 ∈ IGN , we
state that w1 ≼ w2 if w1(S) ≼ w2(S), for all S ∈ 2N , and we define < N, w1 + w2 > and < N, λw >

by (w1 + w2)(S) = w1(S) + w2(S) and (λw)(S) = λ · w(S), for all S ∈ 2N , such that λ ∈ R+.
Additionally, for w1, w2 ∈ IGN with |w1(S)| ≥ |w2(S)|, for all S ∈ 2N , < N, w1 − w2 > is defined by
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(w1 − w2)(S) = w1(S) − w2(S). Interval solutions are interval payoff vectors in I(R). We denote the
set of all the interval payoff vectors by I(R)N . We designate a game < N, w > as size monotonic if
< N, |w| > is monotonic such that |w| (S) ≤ |w| (T ), for all S, T ∈ 2N with S ⊆ T . For further use,
the class of size monotonic interval games with the player set N is denoted by SMIGN (for more
details, see [16]).

Definition 2.3. The interval Shapley value, denoted by Φ : SMIGN → I(R)N , is as follows:

Φ(w) = 1
n!

∑
σ∈Π(N)

mσ(w)

An interval game ⟨N, IuS⟩ is defined by

(IuS)(T ) = uS(T )I

in which I ∈ I(R) and uS is the unanimity game in there S ∈ 2N \ {∅}, for all T ∈ 2N \ {∅}. The
interval Shapley value of the interval game IuS is defined by

Φi(IuS) =
{

I/ |S| , i ∈ S

[0, 0] , i /∈ S

The set of the additive cone generated by the set

K =
{

ISuS | S ∈ 2N \ {∅} , IS ∈ I(R)
}

is denoted by KIGN . Therefore, each element in the cone is a finite sum of elements in K. We note
that KIGN is a subset of SMIGN , and in the specific subclass of cooperative interval games, the
interval Shapley value is axiomatically characterized within KIGN .

3. Axiomatization

This section presents a novel characterization of the Shapley value defined for cooperative interval
games. Furthermore, we recommend using precise axioms and the main theorem in this
characterization. The interval solution, denoted by a function f : IGN → I(R)N is characterized by
assigning a |N |-dimensional real vector to each interval game within the set N . The vector represents
the distribution of interval payoffs that can be achieved through collaborative efforts among individual
players in the game. Initially, we articulate the established axioms governing solutions f : IGN →
I(R)N .

The efficiency axiom is a fundamental principle of game theory, emphasizing the imperative of efficient
resource utilization and maximization of total welfare. This axiom states that game outcomes must
be economically efficient. Consequently, resources must be distributed optimally, and the condition
of any player should not be improved through a more effective allocation of the existing resources.
The efficiency axiom is an important feature in game theory, frequently used to balance payoffs and
strategies. The efficiency axiom is extended by defining it in the context of the interval concept.

Axiom 3.1 (I-EFF): For all w ∈ IGN , it holds that∑
i∈N

fi(w) = w(N)

Player i ∈ N is a null player in v ∈ GN if v(S) = v(S\ {i}), for all S ⊆ N. The concept of a “null
player” refers to a player who has no impact on the strategies of other players and exerts no influence
on the outcomes of the game. This condition is employed in analyses to denote situations where the
participation or influence of a specific player can be considered negligible. The null player axiom is
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recognized as a significant tool in modeling equilibrium and outcome analyses within game theory.
We expand the null axiom by defining it in the context of the interval concept.

Axiom 3.2 (I-NULL): If i ∈ N is a null player in-game w ∈ IGN , then fi(w) = [0, 0].

If v(S ∪ {i}) = v(S ∪ {j}), for all S ⊆ N\{i, j}, then two players i, j ∈ N are called symmetric in
v ∈ GN .

The symmetry axiom states that a player or situation is symmetrical with others. This axiom
contributes to the understanding of equality and equilibrium in analyses. In game theory, symmetry
typically describes situations where players share similar roles or strategies. The symmetry axiom
is widely used to determine game equilibrium points and optimal game strategies. We extend the
symmetry axiom by defining within the framework of the interval concept.

Axiom 3.3 (I-SYM): If i, j ∈ N are symmetric in w ∈ IGN , then fi(w) = fj (w).

The additivity axiom asserts that an individual player’s payoffs contribute to the total payoff of the
game. This axiom emphasizes the idea that the combined contributions of individuals are reflected
in the aggregate of game outcomes. As players aim to maximize their individual payoffs by making
strategic decisions, the additivity axiom is used to determine the game’s overall success. In game
theory, the additivity axiom is a foundational principle essential for analyzing games’ aggregate
outcomes and reaching optimal strategies. We define the additivity axiom within the framework of
the interval concept, extending its scope.

Axiom 3.4 (I-ADD): For all w, w′ ∈ IGN ,

f
(
w + w′) = f(w) + f(w′)

where (w + w′) ∈ IGN is provided by

(w + w′)(S) = w(S) + w′(S)

for all S ⊆ N .

In game theory, the gain-loss axiom is pivotal in explaining how players assess their situations regarding
acquired gains and incurred losses. Players begin their strategic journeys from a designated starting
point, analyzing this point against the gains and losses accumulated as the game progresses. However,
the evaluation process depends on the magnitude of gains and losses and their ability to improve the
current circumstances. In essence, players carefully observe whether there is an equal amount of gain
or loss, highlighting the importance of this dynamic. The gain-loss axiom is extended by defining
within the framework of the interval concept.

Axiom 3.5 (I-GL): For all w, w′ ∈ IGN and i ∈ N such that

w(N) = w′(N) and fi(w) ≽ fi(w′)

there is some j ∈ N such that fj(w) ≼ fj(w′).

The marginality axiom is a fundamental principle in game theory that directs attention to the impact
of a player’s marginal contribution on the total payoff. This axiom is foundational in scrutinizing
players’ strategic choices by emphasizing the decisive effect of marginal changes in evaluating a player’s
decisions and contributions. Pursuing increased returns through marginal contributions is a prominent
tenet of this axiom. We define the marginality axiom within the framework of the interval concept.

Axiom 3.6 (I-M): For all w, w′ ∈ IGN and i ∈ N such that

w(S ∪ {i}) − w(S) = w′(S ∪ {i}) − w′(S)
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for all S ⊆ N\{i}, fi(w) = fi(w′).

According to this axiom, the variation in the game’s payoffs is determined by the marginal change in
a player’s contribution. Following this principle, if a new game is introduced to symmetric players,
any equal change in their marginal contributions should have an equal impact on their payoffs. The
principle states that any equal adjustment in players’ marginal contributions should be fairly reflected
in the corresponding payoffs. The definition of the differential marginality axiom is extended by
providing it within the framework of the interval concept.

Axiom 3.7 (I-DM): For all w, w′ ∈ IGN and i, j ∈ N such that

w(S ∪ {i}) − w(S ∪ {j}) = w′(S ∪ {i}) − w′(S ∪ {j})

for all S ⊆ N\{i, j}, fi(w) − fj(w) = fi(w′) − fj(w′).

Axiomatic characterization involves redefining a concept by specifying its properties through axioms.
Therefore, we have presented the axioms required to define the interval Shapley value. Three of these
axioms serve as the foundational elements for the main theorem. We axiomatically characterize the
interval Shapley value by utilizing these three properties. The relevant theorem will be presented, and
its proof will be provided.

Theorem 3.1. The value that satisfies the Axioms I-GL, I-DM, and I-SYM is referred to as the
interval Shapley value on KIGN .

Proof. Interval Shapley value obeys I-GL and I-SYM axioms by the definition of this value.
Moreover, [21] demonstrates that the Shapley value satisfies DM. Therefore, the interval Shapley
value satisfies I-DM. We aim to establish the converse. Interval Shapley value obeys I-GL and I-SYM.
Let w and w′ belong to KIGN . Consider the symmetric game w′ ∈ KIGN where w′ is uniformly zero
across all coalitions, i.e., w′

i (S) = [0, 0], for all i ∈ S. According to I-SYM, fi (w′) = fj (w′), for all
i ̸= j, and

n∑
i=1

fi
(
w′) = [0, 0]

follows from I-GL. Consequently, fi (w′) = [0, 0], for all i ∈ N . By I-DM, it can be deduced that for
any interval game w ∈ KIGN and any player i ∈ N,

wi (S) = [0, 0] , for all S ⊆ N, implies fi (w) = [0, 0] (3.1)

That is, null players get nothing. In other words, players with null contributions receive no payoff.
We use Shapley’s insight that any game v can be explained as the sum of primitive games, allowing
for a detailed analysis of its fundamental components and strategic foundations. This concept can be
redefined by extending it into the domain of interval games, as explained below:

w =
∑

S⊆N :S ̸=∅
λSuS (3.2)

where

λSuS (T ) =
{

λS , if S ⊆ T

[0, 0] , otherwise

The interval Shapley value finds its formulation in the following manner:

fi (w) =
∑

S⊆N :S ̸=∅
fi (λSuS) =

∑
S:i∈S

λS

|S|

Define the index I of w as the minimal quantity of non-zero terms requisite in an expression delineating
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w in the form specified by (3.2). The theorem is established through induction on the set I. If
I = 0, then every is a null and hence fi (w) = [0, 0] by (3.1). For all i, j ∈ S, I-SYM implies that
fi (w) = fj (w); supplemented by the prerequisite that

n∑
i=1

fi (w) = w (N). Consequently, we deduce

that fi (w) = λS

|S|
, for all i ∈ S. Thus, f (w) constitutes the interval Shapley value for the case of

I ∈ {0, 1}. We assume that f (w) represents the interval Shapley value for any index up to I. Consider
w with an index of I + 1, expressed as

w =
I+1∑
l=1

λSl
uSl

where λSl
̸= [0, 0], for all I. Let S =

I+1⋂
l=1

Sl and suppose that i /∈ S. Define the game

w′ =
∑

l:i∈Sl

λSl
uSl

The index of w is at most I and w′
i (T ) = wi (T ), for all S. Consequently, by induction and I-DM, it

follows that
fi (w) = fi

(
w′) =

∑
l=i∈Sl

λS

|S|

which represents the interval Shapley value of i. We still need to demonstrate that fi (w) is the interval

Shapley value when i ∈ S =
I+1⋂
l=1

Sl. According to I-SYM, fi (w) is a constant c, for all members of

S; similarly, the interval Shapley value is some constant c′, for all members of S. By I-GL, it follows
that c = c′.

The following example illustrates how to construct a model and compute the interval Shapley value
in a real-life operational research scenario, as presented by [14]. Consider an inventory situation
characterized by interval data and formulate an associated interval game. Player 3 owns a storage
facility with a capacity for a single container, while Players 1 and 2 each possess one container. If
Player 1 is permitted to store their container, they will receive a benefit between 20 and 40. If Player
2 is allowed to store their container, the corresponding benefit falls within the range of [60, 80].

Example 3.2. The situation described above corresponds to the interval game ⟨N, w⟩ with N =
{1, 2, 3} and w (S) = [0, 0] if 3 /∈ S, w (∅) = [0, 0] , w (1, 3) = [20, 40] , w (2, 3) = [60, 80], and w (N) =
[80, 100], i.e., a big boss interval game with Player 3 as a big boss. Then, the interval marginal vectors
are provided in the following table where σ : N → N is identified with (σ (1) , σ (2) , σ (3)). Firstly, for
σ1 = (1, 3, 2), we calculate the interval marginal vectors. Then,

mσ1
1 (w) = w (1) = [0, 0]

mσ1
2 (w) = w (N) − w (13) = [80, 100] − [20, 40] = [60, 60]

and
mσ1

3 (w) = w (13) − w (1) = [20, 40] − [0, 0] = [20, 40]

The others can be calculated similarly, which are shown in Table 1.
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Table 1. Interval marginal vectors
σ mσ

1 (w) mσ
2 (w) mσ

3 (w)

σ1 = (1, 2, 3) mσ1
1 (w) = [0, 0] mσ1

2 (w) = [0, 0] mσ1
3 (w) = [80, 100]

σ2 = (1, 3, 2) mσ2
1 (w) = [0, 0] mσ2

2 (w) = [60, 60] mσ2
3 (w) = [20, 40]

σ3 = (2, 1, 3) mσ3
1 (w) = [0, 0] mσ3

2 (w) = [0, 0] mσ3
3 (w) = [80, 100]

σ4 = (2, 3, 1) mσ4
1 (w) = [20, 20] mσ4

2 (w) = [0, 0] mσ4
3 (w) = [60, 80]

σ5 = (3, 1, 2) mσ5
1 (w) = [20, 40] mσ5

2 (w) = [60, 60] mσ5
3 (w) = [0, 0]

σ6 = (3, 2, 1) mσ6
1 (w) = [20, 20] mσ6

2 (w) = [60, 80] mσ6
3 (w) = [0, 0]

Table 1 illustrates the interval marginal vectors of the cooperative interval game in Example 3.2. The
average of the six interval marginal vectors is the interval Shapley value of this game, which can be
observed as:

Φ(w) =
([

10,
40
3

]
,

[
30,

100
3

]
,

[
40,

160
3

])

4. Conclusion

This study aims to provide an axiomatic characterization of the Shapley value using the axioms above.
It is argued that these axioms uniquely define the Shapley value. The paper surveys cooperative game
theory in the literature, focusing on two specific subtraction operators: Moore’s subtraction operator
and the special subtraction operator. In the last decade, several axiomatic characterizations of the
Shapley value have been using the special subtraction operator. Shortly, we plan to introduce new
axiomatic characterizations for the Shapley value using Moore’s subtraction operator. The classical
game’s dividends, initially introduced by Hars [15], play a pivotal role in characterizing the classical
Shapley value. The utilization of dividends enables the characterization of the interval Shapley value
in cooperative interval games with compact real-valued coalitional interval values.

In conclusion, further exploration of this idea shows promise as a potential avenue for future research.
This approach offers a valuable perspective for comprehending and assessing the Shapley value.
Regarding future research, further exploration of this concept presents an exciting and fruitful area
for characterizing the Shapley value. Furthermore, a more comprehensive examination of Grey Game
Theory, which considers uncertainty and incomplete information, enhances the accuracy of modeling
cooperative games. Within this framework, characterization methods and the Shapley value enable
a better understanding of collaboration dynamics among players, especially in situations involving
uncertainty. This characterization has the potential to provide new insights for further characteriza-
tions and is amenable to extension within the domain of grey games.

Furthermore, it acts as a guiding framework to facilitate characterizations of other relevant values, such
as the Banzhaf and T-value. In this respect, it offers a nuanced understanding of Shapley value and
guides researchers seeking to characterize different values. As a result, this characterization emerges
as a comprehensive framework that directs research toward the Shapley value and guides research
into related values within the cooperative game theory. Therefore, future investigations could deepen
understanding and knowledge in this field by conducting a comprehensive analysis incorporating both
cooperative games and Grey Game Theory.
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