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1. INTRODUCTION  
Real-world problems, in general, can be expressed as 

complex non-linear programming problems. Due to their 

combinatorial nature, these problems have been described as 

hard problems [1]. The structure of the objective functions at 

the core of these problems also determines the optimization 

process leading to the solution. Non-linear programming 

(NLP) is a mathematical programming technique in which 

the objective function is non-linear or one or more of the 

constraints have a non-linear relationship. NLP problems can 

be modeled in Eq. 1 given below [1]. Here, the objective 

function n is the number of variables, g and h are the 

constraints.    

                      

𝑓𝑚𝑖𝑛(𝑥) = 𝑓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛)

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2, … , 𝑛

ℎ𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … , 𝑛
}                     (1) 

Traditional methods exist in the literature for solving the 

NLP problem. These methods, defined as gradient 

optimization techniques, attempt to solve these problems by 

using special mathematical structures and formulations [1]. 

Examples of these methods include the sequential 

unconstrained minimization technique [2], the augmented 

lagrangian [3], Newton-Raphson [4], the successive 

quadratic programming algorithm [5], the steepest descent 

algorithm [6], dynamic integer programming [7], and the 

stochastic Newton optimization method [8] as optimization 

techniques. The disadvantage of these techniques is that they 

are not suitable for solving complex optimization problems. 

Especially as the complexity of the problem increases with 

the addition of uncertainties to the system, more complex 

optimization techniques that overcome the limitations of 

classical approaches should be used. Metaheuristics have 

been developed with this goal in mind [9, 10]. Since 

metaheuristic algorithms do not use the derivative or second 

derivative of the objective function, they produce solutions 

in the neighborhood of the optimal solution. They avoid 

getting stuck in the local search space, reach the global 

solution in less time, and can hybridize with other algorithms 

to deal with different problems, having a flexible structure 

with all these features [11-13]. Due to their repetitive 

working methods and memory utilization, they can make 

new explorations without having to go back to the beginning 

each time [14]. Metaheuristic algorithms consist of three 

different mechanisms: the initialization phase, containing the 

candidate solution set; the exploitation phase, which divides 

the search space into regions to concentrate on narrow areas; 

and the exploration phase, which scans the entire space, 

selects, and improves the best solutions obtained in the 

exploitation phase. The success of metaheuristic algorithms 

is directly proportional to the strength of the balance between 

the exploitation and exploration phases [15]. The CapSA 

algorithm considered in this paper is one of the current and 

efficient metaheuristic algorithms produced in 2021 [16].  

ARTICLE INFO 
 

ABSTRACT 

Received: Nov., 15. 2023 

Revised: Dec., 11. 2023 

Accepted:  Dec., 21. 2023 

 The purpose of this paper is to demonstrate the superiority of the Capuchin Search Algorithm (CapSA), a 

metaheuristic, in competitive environments and its advantages in optimizing engineering design problems. 

To achieve this, the CEC 2019 function set was used. Due to the challenging characteristics of the CEC 
2019 function set in reaching a global solution, it effectively showcases the algorithm's quality. For this 

comparison, sea-horse optimizer (SHO), grey wolf optimizer (GWO), sine-cosine algorithm (SCA), and 

smell agent optimization (SAO) were chosen as current and effective alternatives to the CapSA algorithm.        
Furthermore, the gear train design problem (GTD) was selected as an engineering design problem. In 

addition to the CapSA algorithm, a hybrid of SCA and GWO algorithm (SC-GWO) and genetic algorithm 

(GA) were chosen as alternatives for optimizing this problem. The performance superiority and optimization 
power of the CapSA algorithm were assessed using statistical metrics and convergence curves, then 

compared with alternative algorithms. Experimental results conclusively demonstrate the significant 

effectiveness and advantages of the CapSA algorithm. 

 

Keywords:  
Metaheuristic algorithm  

Optimization  
CapSA  

Gear train design problem 

 

Corresponding author: Erdal EKER 

ISSN: 2536-5010 | e-ISSN: 2536-5134 

DOI:  https://doi.org/10.36222/ejt.1391524 

 

142

https://orcid.org/0000-0002-5470-8384
user
Typewritten text
Research Article



EUROPEAN JOURNAL OF TECHNIQUE, Vol.13, No.2, 2023 

 

Copyright © European Journal of Technique (EJT)                  ISSN 2536-5010 | e-ISSN 2536-5134                                    https://dergipark.org.tr/en/pub/ejt 

  

Many studies on CapSA can be mentioned in the literature. 

The main ones are explained as follows. In the first paper 

introducing the algorithm, Braik et all experienced the 

optimization power of the CapSA algorithm in classic 

engineering design problems such as welded beam design, 

pressure vessel design, tension-compression spring design, 

speed reducer design [16]. Braik, one of the inventors of the 

CapSA algorithm, proposed the MGP-CapSA algorithm by 

combining the CapSA algorithm with the multigene genetic 

algorithm, and with this algorithm, he produces a new 

simulator model for the wrapping problem from non-linear 

problems and uses CapSA to optimize the coefficients of the 

regression equations of MGP [17]. Kanipariya et all 

produced the ICSA algorithm by hybridising the CapSA 

algorithm with adversarial learning and chaotic local search 

algorithms and used it to classify lung nodule abnormalities 

[18]. Fathy et all used the CapSA algorithm to minimize grid 

active power loss by maintaining power flow, bus voltage 

and transmission line within their normal ranges in 

electricity distribution networks [19]. A similar study was 

conducted by Zakaria et all [20].  Ramu et all used the 

modified CapSA algorithm (MCS) to solve the cloud 

performance scheduling problem, which minimizes the 

completion time and improves resource utilisation [21]. 

Broumandnia et all hybridized the CapSA algorithm with the 

inverted ant colony optimization (IACO) algorithm for the 

optimization of some processes related to the cloud system 

and obtained better performance [22].  Qin et all, CapSA 

based PID control system for solving industrial problems 

[23]. Kumar et all used CapSA algorithm as an optimizer to 

classify normal and malicious attacks by strengthening the 

security scheme of IoT (Internet of Things) [24]. In a similar 

study, Rani and Burty hybridized CapSA with different 

machine learning algorithms for smart home energy 

management [25]. Ehteram et all used the CapSA algorithm 

as a basis for training ANNs to carry out evaporation 

prediction [26]. Alphonse et all used the ECapSA technique, 

a combination of CapSA and wild horse optimizer, to enable 

the simultaneous allocation of electric vehicle charging 

station (EVCS) and photovoltaic (PV) energy sources in the 

smart grid [27]. The gear train design problem, which is 

optimized in this study, has been studied by many 

metaheuristic algorithms before and effective results have 

been obtained [28-32]. 

The organization of the paper is as follows. Section 1 

consists of the introduction and the optimization process of 

the study. The second section consists of the introduction and 

mathematical modelling of the CapSA algorithm. 

Experimental studies are included in the third section. The 

sub-sections of this section consist of the introduction of the 

CEC 2019 function set and the comparison of the CapSA 

algorithm with alternative algorithms through statistical 

results and observing the performance superiority of the 

CapSA algorithm through tables and converge curves. The 

other subsection includes the optimization of the Gear train 

design problem with the help of CapSA and alternative 

algorithms, The performance results are shown through 

tables and convergence curves, and the fourth section 

contains the conclusions of the study. 

 

2. CAPUCHIN SEARCH ALGORITHM (CapSA) 

    The CapSA algorithm, based on swarm intelligence, was 

created by simulating the foraging behavior of Capuchin 

monkeys living in the Americas, with a particular emphasis 

on their jumping abilities [16, 33]. The mathematical model 

of the CapSA algorithm is constructed to align the jumping 

movements of Capuchin monkeys with the exploration 

phase, while the swinging and climbing movements 

correspond to the exploitation phase. In the first stage, a 

random initial set of a specific number of candidates is 

created [16]. The initial set is represented by a matrix of size 

dxn. 

                      𝑥 = [
𝑥1

1 … 𝑥𝑑
1

⋮ … ⋮
𝑥1

𝑛 … 𝑥𝑑
𝑛

]

𝑑×𝑛

                               (2) 

The initial location of each Capuchin monkey is expressed 

in Eq. 3. Here 𝑢𝑏𝑗 and 𝑙𝑏𝑗, denotes the upper and lower 

boundaries of the i. monkey in the jth dimension, 

respectively operator 𝑟 corresponds to a 

random number uniformly distributed in the closed interval 

[0,1]. 

                       𝑥𝑗 = 𝑢𝑏𝑗 + 𝑟 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗)                               (3) 

The position of the leader monkey during the tree climbing 

behavior is modelled in Eq. 4. Here, the i. positions of the 

leader and accompanying monkeys in the j. dimension 𝑥𝑗
𝑖, 𝐹𝑗  

the location of the food, 

𝑣𝑗
𝑖  the speed of the monkey, 𝑃𝑏𝑓 ,  the probability of balance 

provided by the monkey’s tail throughout the jumping 

movement, The gravitational force, 𝑔, corresponding to the 

number 9.81, 𝜀 operator expresses a random number 

informly distributed in the interval [0,1]. 

                                                                                  

𝑥𝑗
𝑖 = 𝐹𝑗 +

𝑃𝑏𝑓(𝑣𝑗
𝑖)

2
𝑠𝑖𝑛(2𝜋)

𝑔

𝑖 <
𝑛

2
, 0.10 < 𝜀 ≤ 0.20

}                          (4)   

Monkeys jump angle (𝜃) is given in Eq. 5. Here operator 𝑟 

expresses a random number irregularly distributed in the 

interval  [0,1]. 

                         𝜃 =
3

2
𝑟                                                                     (5) 

In Eq. 6, we show that CapSA is a system that updates the 

monkeys' locations to quickly detect the location of the food 

source by exploring and exploiting the search space. 𝜏 

operator is defined. 

                    𝜏 = 𝛽0𝑒𝛽1(
𝑡

𝑇
)

𝛽2

                                                  (6) 

where t and T, denote the current iteration and maximum 

iteration, respectively, 𝛽0, 𝛽1, 𝛽2 it is stated that after many 

experimental studies, the author has chosen 2, 21 and 2 as 

the most appropriate values for the parameters, respectively. 

The appropriate value of the parameter 𝜏 strengthens the 

exploration and exploitation capabilities of the CapSA 

algorithm.  

       In Eq.7, the speed of monkey i. in the jth dimension is 

modelled. Here, the velocity of monkey ith in the jth 
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dimension 𝑣𝑗
𝑖, their location 𝑥𝑗

𝑖 ,  best location 𝑥𝑏𝑒𝑠𝑡𝑗

𝑖  refers to 

𝑟1 ve 𝑟2 is a random number uniformly in the range [0,1]. 𝜌, 

coefficient of inertia controls the effect of the previous 

velocity on the motion. In this equation, there are also two 

fixed control parameters namely 𝑎1 and 𝑎2  that control the 

speed of the monkeys by adjusting the parameters  𝑥𝑏𝑒𝑠𝑡𝑗

𝑖 and 

𝐹𝑗. 𝜌, 𝑎1 and 𝑎2 are parameters arbitrary. 

    𝑣𝑗
𝑖 = 𝜌𝑣𝑗

𝑖 + 𝜏𝑎1 ( 𝑥𝑏𝑒𝑠𝑡𝑗

𝑖 − 𝑥𝑗
𝑖) 𝑟1 + 𝜏𝑎2(𝐹𝑗  − 𝑥𝑗

𝑖)𝑟2     (7) 

     The new position of the leader and the accompanying 

monkeys as a result of the jump is modelled in Eq.8 

      𝑥𝑗
𝑖 = 𝐹𝑗 +

𝑃𝑒𝑓𝑃𝑏𝑓(𝑣𝑗
𝑖)𝑠𝑖𝑛(2𝜃)

𝑔
,𝑖 <

𝑛

2
,0.20 < 𝑒 ≤ 0.30       (8) 

given 𝑃𝑒𝑓 is the probability of the monkey yawning. The new 

position of the Alpha monkey is modelled in Eq. 10. Given 

by 𝑃𝑏𝑓 = 0.7 and 𝑃𝑒𝑓 = 9. 

                       𝑥𝑗
𝑖 = 𝑥𝑗

𝑖 + 𝑣𝑗
𝑖 , 𝑖 <

𝑛

2
, 0.20 < 𝑒 ≤ 0.30      (9)  

      Local foraging is achieved by the swaying movement 

that alpha and its companion monkeys use to collect food. 

The positions of the monkeys in this situation are formulated 

below. 

     𝑥𝑗
𝑖 = 𝐹𝑗 + 𝜏𝑃𝑏𝑓 × 𝑠𝑖𝑛(2𝜃), 𝑖 <

𝑛

2
, 0.50 < 𝑒 ≤ 0.75   (10) 

     Similar to local foraging, the leader and its companion 

monkeys may repeat the behavior of foraging repeatedly. 

The positions of monkeys displaying this behavior are 

modelled following. 

      𝑥𝑗
𝑖 = 𝐹𝑗 + 𝜏𝑃𝑏𝑓(𝑣𝑗

𝑖−𝑣𝑗−1
𝑖 ) 𝑖 <

𝑛

2
, 0.75 < 𝑒 ≤ 1.00    (11) 

where the 𝑖𝑡ℎ monkey in the jth dimension 𝑣𝑗
𝑖  current speed, 

𝑣𝑗−1
𝑖  indicates the previous speed.  

      Monkeys can also move randomly to find food. This is 

given in the equation below. In the equation 𝑃𝑟  is equal to 0 

and expresses the random search probability of the monkeys. 

The randomization capability    and the monkey herd 

behavior expressed here improves the global search 

capability of the algorithm and supports the escape from 

local optimum points. 𝜏 parameter has the role of 

strengthening the equilibrium position between exploration 

and exploitation. 

       𝑥𝑗
𝑖 = 𝜏 × (𝑙𝑏𝑗 + 𝑒 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗) ), 𝑖 <

𝑛

2
, 𝑒 ≤ 𝑃𝑟       (12) 

      Eq. 13 models the leader monkey updating the position 

of its followers based on the third law of motion. 

                          𝑥𝑓 = 𝑥𝑖 + 𝑣0𝑡 +
1

2
𝑎𝑡2                                     (13) 

                          𝑎 =
∆𝑣

∆𝑡
=

𝑣𝑓−𝑣0

𝑡1−𝑡0
                                                  (14) 

                          𝑣𝑓 =
∆𝑥

∆𝑡
=

𝑥𝑓−𝑥0

𝑡1−𝑡0
                                        (15) 

given in Eq.13   𝑥𝑓 and 𝑥𝑖 with the displacements in the initial 

and final phases 𝑡 time,  𝑣0 initial speed,  𝑎  is the slope 

whose formula is given in Eq. 14.    𝑣𝑓 final speed, 𝑣0   initial 

velocity, respectively 𝑡1ve 𝑡0 give the final and start times. 

In Eq. 16 𝑣0 = 0 when taken 𝑎 becomes as formulated in 

Eq.16. 

                  𝑎 =
𝑥𝑓−𝑥0

(𝑡1−𝑡0)2                                                          (16) 

Since Capuchin monkeys live in herds, it is important to 

simulate the behavior of the leader as well as the behavior of 

the followers as they follow the leader. 

                     𝑥𝑗
𝑖 =

1

2
(𝑥′𝑗

𝑖 +  𝑥𝑗
𝑖−1),

𝑛

2
≤ 𝑖 ≤ 𝑛                   (17) 

      From the expressions given in Eq.17, 𝑥𝑗
𝑖 current position 

of the followers in dimension jth, 𝑥𝑗
𝑖−1 previous location, 𝑥′𝑗

𝑖  

is the current position of the leader. Since the time intervals 

in the simulation refer to iterations 𝑡𝑖 − 𝑡𝑖−1 = 1.    

The fitness function for each monkey is evaluated by 

adjusting the solution vector values in a fitness function and 

stored in a matrix as expressed in Eq.18, which serves as a 

memory.       

                       𝑓 = [
𝑓1([𝑥1

1, 𝑥2
1, … , 𝑥𝑑

1])
      ⋮        ⋮            ⋮

𝑓𝑛([𝑥1
𝑛, 𝑥2

𝑛, … , 𝑥𝑑
𝑛])

]

𝑑×𝑛

                   (18) 

3. EXPERIMENTAL RESULTS 
 

       The CEC2019 function set was employed to assess the 

optimization capability of the CapSA algorithm. This set 

consists of difficult problems. The goal of these problems is 

to highlight the optimization capability and competitive 

aspect of the algorithm by compelling it to reach the global 

solution [15]. For the alternative algorithms that CapSA will 

compete with, we selected current and efficient algorithms. 

These include the grey wolf optimizer (GWO) [34], sea-

horse optimizer (SHO) [35], sine-cosine algorithm (SCA) 

[36], and smell agent optimization (SAO) [37]. When 

evaluating the performance of the algorithm, we conducted 

30 independent runs with 500 iterations and 30 search agents 

in each run.  In this study, CapSA parameters took arbitrary 

values 𝜌, 𝑎1 and 𝑎2 which were set to 0.7, 1, and 1 

respectively.  
TABLE I   

CEC 2019 FUNCTIONS 

Functions Dimension [ Lower&Upper bound] Fit. V 

Function 1 9 [−8192, 8192] 1 

Function 2 16 [−16384, 16384] 1 

Function 3 18 [-4,4] 1 

Function 4 10 [−100, 100] 1 

Function 5 10 [−100, 100] 1 
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Function 6 10 [−100, 100] 1 

Function 7 10 [−100, 100] 1 

Function 8 10 [−100, 100] 1 

Function 9 10 [−100, 100] 1 

Function 10 10 [−100, 100] 1 

     In Table 1, the optimal values of CEC 2019 are provided. 

As the optimal value for all functions is 1, the algorithm 

observed to be the most effective experimentally is expected 

to be closer to 1 than the others. For this reason, optimal 

results are expected from both the best value and the average 

value. The difference between the best value and the worst 

value should not be too significant, indicating that the 

standard deviation value should be low. 

  

TABLE 2 

. PERFORMANCE OF CEC2019 

CEC2019 

Functions 
Metrics Algorithms 

  CapSA SHO GWO SCA SAO 

F
u

n
ct

io
n
 1

 Mean 4.1043E+04 4.5384E+04 1.3297E+08 8.5744E+09 3.3710E+11 

Std.dev. 2.6591E+03 2.5926E+03 2.4538E+08 9.4139E+09 4.2532E+11 

Best 3.7079E+04 4.0869E+04 9.0425E+04 4.5544E+07 1.0675E+06 

Worst 4.8634E+04 5.0757E+04 1.0915E+09 4.5484E+10 1.5831E+12 

Run time (sec.) 6.2867 9.4452 6.2162 6.1441 24.0524 

Rank 1 2 3 4 5 

F
u

n
ct

io
n
 2

 Mean 1.7342E+01 1.7386E+01 1.7344E+01 1.7485E+01 2.1755E+03 

Std.dev. 6.4444E-05 1.0166E-01 3.4780E-04 6.6712E-02 2.1538E+03 

Best 1.7342E+01 1.7343E+01 1.7343E+01 1.7397E+01 1.7881E+01 

Worst 1.7343E+01 1.7677E+01 1.7345E+01 1.7710E+01 8.3069E+03 

Run time (sec.) 0.2711 0.8144 0.3256 0.3926 0.6813 

Rank 1 3 2 4 5 

F
u

n
ct

io
n
 3

 Mean 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2703E+01 

Std.dev. 9.0336E-15 4.8734E-06 3.4200E-04 9.4149E-05 8.5018E-04 

Best 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 1.2702E+01 

Worst 1.2702E+01 1.2702E+01 1.2704E+01 1.2703E+01 1.2706E+01 

Run time (sec.) 0.3935 0.8796 0.4922 0.4089 0.8863 

Rank 1 2 4 3 5 

F
u

n
ct

io
n
 4

 Mean 4.3731E+01 1.4375E+03 6.1384E+01 1.5444E+03 1.6066E+04 

Std.dev. 1.9984E+01 1.5552E+03 2.2991E+01 5.5463E+02 5.1770E+03 

Best 1.0950E+01 9.5000E+01 2.0309E+01 6.3374E+02 7.1411E+03 

Worst 8.6579E+01 4.7645E+03 1.0763E+02 2.6895E+03 2.8970E+04 

Run time (sec.) 0.3186 0.7399 0.3504 0.2304 0.79839 

Rank 1 3 2 4 5 

F
u

n
ct

io
n
 5

 Mean 1.3192E+00 1.7793E+00 1.4540E+00 2.2394E+00 5.3936E+00 

Std.dev. 1.7340E-01 2.5219E-01 2.5398E-01 1.2223E-01 1.2545E+00 

Best 1.0689E+00 1.2928E+00 1.0790E+00 2.0473E+00 2.8281E+00 

Worst 1.6598E+00 2.4198E+00 1.8360E+00 2.6946E+00 8.2563E+00 

Run time (sec.) 0.1385 0.4208 0.1983 0.1867 0.6286 

Rank 1 3 2 4 5 

F
u

n
ct

io
n
 6

 Mean 7.9079E+00 8.0011E+00 1.1066E+01 1.0843E+01 1.0121E+01 

Std.dev. 1.3018E+00 9.9758E-01 7.0067E-01 6.3186E-01 6.9379E-01 

Best 4.8923E+00 5.7081E+00 9.7446E+00 9.3411E+00 8.9621E+00 

Worst 1.0783E+01 1.0004E+01 1.2501E+01 1.1967E+01 1.1699E+01 

Run time (sec.) 2.3342 3.5275 2.2171 2.2328 10.2188 

Rank 1 2 5 4 3 

F
u

n
ct

io
n
 7

 Mean 4.3136E+02 2.8850E+02 4.3643E+02 7.7376E+02 1.1062E+03 

Std.dev. 3.2594E+02 1.0717E+02 3.0061E+02 1.7682E+02 3.9157E+02 

Best -6.3737E+01 -1.4686E+01 5.8673E+01 3.9072E+02 3.7941E+02 

Worst 1.3055E+03 5.3524E+02 1.2014E+03 1.0398E+03 2.2533E+03 

Run time (sec.) 0.1595 0.4134 0.1704 0.1974 0.5529 

Rank 2 1 3 4 5 

F
u

n
ct

io
n
 8

 Mean 5.4122E+00 5.4523E+00 5.2877E+00 6.1099E+00 6.4154E+00 

Std.dev. 6.899E-01 5.4020E-01 9.0214E-01 4.5161E-01 3.4621E-01 

Best 3.9460E+00 4.4703E+00 3.5009E+00 5.0269E+00 5.7638E+00 

Worst 6.6099E+00 6.3853E+00 6.9706E+00 6.8575E+00 7.2611E+00 

Run time (sec.) 0.1443 0.4205 0.2034 0.1816 0.6881 

Rank 2 3 1 4 5 

F
u

n
ct

io
n
 9

 Mean 2.7197E+00 1.5525E+02 4.4281E+00 1.4306E+02 2.6530E+03 

Std.dev. 0.3344E-01 2.7471E+02 9.2393E-01 1.1088E+02 8.8512E+02 

Best 2.4323E+00 4.4605E+00 2.5669E+00 3.2968E+00 6.0353E+02 

Worst 4.1519E+00 8.0767E+02 6.3641E+00 4.7436E+02 4.6614E+03 

Run time (sec.) 0.1644 0.4103 0.1806 0.1978 0.5266 

Rank 1 4 2 3 5 
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F
u

n
ct

io
n
 1

0
 Mean 1.95338E+01 2.0112E+01 2.0503E+01 2.0467E+01 2.0455E+01 

Std.dev. 2.9277E+00 7.8076E-02 8.1513E-02 9.1492E-02 1.6069E-01 

Best 4.0361E+00 1.9993E+01 2.0299E+01 2.0280E+01 2.0223E+01 
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Figure 1.  Convergence curve of algorithms via CEC 2019 function
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In this context, upon analyzing Table 2, it is observed that 

the CapSA algorithm is more advantageous from function 1 

to function 5. It is advantageous in terms of both average and 

best value in function 6, and it is superior in functions 9 and 

10. While it completed the optimization process in the 

shortest time for almost all functions, it took slightly longer 

in functions 1, 4, and 6. When looking at the average values, 

except for functions 7 and 8, it has consistently held its status 

as the most superior algorithm. The CapSA algorithm was 

run for the first time with the CEC 2019 function set and it 

was clearly seen that it has a strong competitive aspect and a 

structure that can reach global results without getting stuck 

in the local area. Convergence curves are statistical measures 

that indicate whether algorithms are converging early or 

sticking to local optimum points as they iteratively progress 

through the process of optimizing a function. In the Figure1, 

when the CAPSA algorithm is compared with alternative 

algorithms, the algorithm is labelled as 1. It is observed that 

it cannot progress to the local optimum point in the function,  

 

but it progresses steadily towards the optimum point in the 

other functions for 500 iterations. In the 7th and 8th 

functions, GWO algorithm shows better convergence, while 

CapSA shows the best convergence in all other algorithms.  

4. GEAR TRAIN DESİGN PROBLEM 

    Figure 2 shows the design of a gear train, which is set up 

to determine the number of teeth in each gear to produce a 

given speed ratio between the input and output shaft. Here 

A, B, C and D indicate the number of gears in each wheel. In 

order to minimize the ratio of angular velocity variation 

between input and output in accordance with the objective of 

the gear train design problem, a mathematical model is 

established by Eq. 19 [38-40].   

    
𝑚𝑖𝑛𝑓(𝑥) = (

1

6.931
 −

𝑥2𝑥3

𝑥1𝑥4

)
2

 �⃗� = [𝐴, 𝐵, 𝐶, 𝐷] = [𝑥1, 𝑥2, 𝑥3, 𝑥4],   12 ≤ 𝑥𝑖 ≤ 60

}      (19) 

In Eq. 18,  
𝑥2𝑥3

𝑥1𝑥4
 expression gives the gear ratio.   

 

 

C
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D

B
 

 

Figure 2. GTD model 

 

TABLE 3 

. GTD ANALYSIS RESULTS 

 Parameters Metrics  

Algorithm 𝑥1 𝑥2 𝑥3 𝑥4 Mean Std. Dev. Best Worst Rank 

CapSA 12 32 52 51 2.3987e-19 1.3080e-18 1.2326e-32 7.1655e-18 1 

GWO 15 22 55 45 5.2328e-12 1.0711e-11 1.3783e-15 4.5145e-11 4 

SCA 15 29 60 51 1.5854e-09 2.2843e-09 6.9337e-13 7.4779e-09 5 

SHO 12 12 48 21 7.4748e-09 1.7250e-08 7.5125e-17 7.1094e-08 6 

SAO 21 58 58 18 3.0622e-03 1.6206e-02 2.0291e-17 8.8858e-02 7 

SC-
GWO[40] 

43 16 19 49 2.7009E-12 - - - 3 

GA[41] 19 16 43 49 2.7000E-12 - - - 2 

     The results of the performance comparisons of competitive 

metaheuristic algorithms help to determine the most effective 

algorithm in the optimization of the problem and the emergence 

of the optimum model. In this context, the analysis results of 

the CapSA, GWO, SCA, SHO, SAO, SC-GWO and GA 

algorithms for the GTD problem are shown and evaluated in 

Table 3. Here, the optimization results of SC-GWO algorithm, 

which is a hybrid algorithm of SCA and GWO, and Genetic 

algorithm (GA) for GTD problem are taken from previous 

studies. [40, 41]. 
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     When Table 3 is observed, the optimal result is found for 

the gear arrangement ratio generated by the CapSA algorithm. 

Here, the approximate number of gears and the synchronized 

encounter with each other reveal that it shows high 

performance compared to other algorithms. When Figure 3 is 

analyzed, it will be seen that the visual dimension of the table 

is parallel to the results in Table 3. In fact, in the convergence 

curve, it can be seen that the CapSA algorithm is quite stable 

and gets results around zero. 

 

Figure 3. Convergence curve of GTD model via algorithms 

 

5. DISCISSION 

The aim of this paper is to reveal the competitiveness and 

performance superiority of the CapSA algorithm by comparing 

it with alternative algorithms through the CEC 2019 quality 

function set and to optimize the gear train design problem, 

which is one of the classic engineering problems. CapSA has 

experimentally shown that it is an algorithm with more 

advantageous results compared to alternative algorithms with 

various statistical measurements. Likewise, it has been 

experimentally observed that CapSA algorithm has the most 

optimal results in the optimization of GTD problem. Based on 

these results, it can be stated that the CapSA algorithm has a 

strong competitive structure, is stable in solving real world 

problems and has the flexibility to overcome the problems of 

getting stuck in the local algorithm in some functions seen in 

the structure of the algorithm when it is developed. For this 

reason, the CapSA algorithm is a promising algorithm that can 

be addressed in future studies with different aspects. 
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