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 Abstract 

Worldwide, cancer is the second most common cause of death. Chemotherapy is a 

widely used strategy to tumor treatment that is particularly effective in controlling the 

growth of cancerous tumors and their size. We created a fractional-order mathematical 

model that illustrates tumor growth in the presence of chemotherapy to obtain a more 

profound comprehension of the complexities of chemotherapy mechanisms. This all-

inclusive paradigm addresses both the impacts of medication therapy and the immune 

system's reaction. We demonstrated the positivity and boundedness of the solutions by 

looking at their existence and uniqueness in order to demonstrate the biological 

significance of the system. Our approach involves identifying equilibrium points and 

investigating stability requirements within a range of model parameters in order to 

characterize the dynamic features of this differential equation model. Additionally, we 

ran numerical simulations with various parameter values. 

To illustrate the memory effect of the fractional derivative, we also simulated the 

system's dynamic behavior for various orders of fractional derivatives. To put it 

another way, we came to the conclusion that the chemotherapeutic treatment is quite 

effective on populations and that the memory effect happens when ϑ, decreases from 

1. The purpose of this research is to assist physicians in adopting the appropriate safety 

measures when diagnosing and treating cancer. 

Kemoterapi İlaç Etkisi Dahil Tümör-Bağışıklık Sistemi İlişkisinin Kesirli Mertebeden 

Matematiksel Modellenmesi ve Kararlılık Analizi 
Anahtar Kelimeler 

Varlık-teklik, Sayısal çözümler, 

Kararlılık, Sayısal simülasyon, 

Kesirli mertebeden türev 

 Özet 

Kanser dünya çapında ikinci en sık ölüm nedenidir. Kemoterapi, özellikle kanserli 

tümörlerin büyümesinin ve boyutlarının kontrol edilmesinde etkili olan, tümör 

tedavisinde yaygın olarak kullanılan bir stratejidir. Kemoterapi mekanizmalarının 

karmaşıklığının daha derinlemesine anlaşılmasını sağlamak için kemoterapi varlığında 

tümör büyümesini gösteren kesirli dereceli bir matematiksel model oluşturduk. Bu her 

şeyi kapsayan paradigma, hem ilaç tedavisinin etkilerini hem de bağışıklık sisteminin 

tepkisini ele alır. Sistemin biyolojik önemini ortaya koymak için çözümlerin varlığına 

ve tekliğine bakarak çözümlerin pozitifliğini ve sınırlılığını ortaya koyduk. 

Yaklaşımımız, bu diferansiyel denklem modelinin dinamik özelliklerini karakterize 

etmek için denge noktalarının belirlenmesini ve bir dizi model parametresi dahilinde 

stabilite gereksinimlerinin araştırılmasını içerir. Ek olarak çeşitli parametre 

değerleriyle sayısal simülasyonlar yürüttük. 

Kesirli türevin hafıza etkisini göstermek için, ayrıca kesirli türevlerin çeşitli dereceleri 

için sistemin dinamik davranışını da simüle ettik. Başka bir deyişle, kemoterapötik 

tedavinin popülasyonlar üzerinde oldukça etkili olduğu ve hafıza etkisinin ϑ, 1'den 

düştüğünde ortaya çıktığı sonucuna vardık. Bu araştırmanın amacı, kanseri tedavi 

etmek ve teşhis koyarken uygun güvenlik önlemlerini alma konusunda hekimlere 

yardımcı olmaktır. 
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1. Introduction 

The term "cancer" is broad and encompasses a variety of disorders that might potentially affect any region of the body. 

A wide range of illnesses collectively referred to as cancer are defined by unchecked cell division. Unrestricted cell 

proliferation in cancer leads to the creation of malignant tumors that can spread to distant sections of the body. One of 

the most noticeable characteristics of cancer is the quick development of aberrant cells that multiply uncontrollably and 

eventually invade neighboring bodily parts. Subsequently, these cells may disperse to other remote regions of the body. 

It is often acknowledged that cancer is one of the deadliest diseases in the modern world. Despite great efforts, a permanent 

treatment for cancer remains unattainable due to its complicated nature, making the battle against cancer challenging. The 

prevalence of cancer has not decreased despite developments in science and technology. Cancer continues to be a major 

contributor to death rates worldwide. Ten million individuals lost their lives to cancer in 2020. Over the next 20 years, 

the World Health Organization (WHO) projects a startling 70% increase in new cancer cases (World Health Organization, 

2015). According to the WHO, minimizing the disease's risk factors can prevent 30% to 50% of cancer cases. 

Furthermore, early detection, proper care, and therapy can stop cancer from spreading. The likelihood of recovering from 

different forms of cancer is greatly increased by early detection and effective therapy. Numerous researchers have 

investigated the interactions between the immune system, particularly effector cells, tumor cells. The field of evolutionary 

biology and ecology offers new perspectives that can greatly increase our understanding of clinical behavior. Controlling 

the progression of tumors requires attention, underlining the extraordinary importance of cancer research [1–5]. 

Mathematical modeling serves as a valuable tool for understanding interactions between various components in the tumor 

microenvironment. Mathematical modeling has been used to explain the relationship between these components, as seen 

in references [6-9]. One of the most common types of treatments used to treat cancer is chemotherapy. Chemotherapy 

frequently has a significant impact on halting the spread of cancer. There are many mathematical models that include the 

effect of chemotherapy on the relationship between the immune system and tumor cells. For example, In [10], Özköse et 

al. They examined the relationship between cancer and effector cells, taking into account the effect of chemotherapy 

drugs, and made predictions about the future behavior of the cancer. In this article, the use of stem cells in cancer treatment 

together with chemotherapy. is demonstrated mathematically. In our study, we considered immune cells instead of 

effector cells. Immune cells instead of effector cells were taken into account in the parameters. In [11] the authors aimed 

to identify areas of most significant variation in the cellular population within the tumor. Taking into account the entire 

range of values, they obtained parameters characterizing the effectiveness of the disruptive drug based on the proposed 

treatment approach. In [12], Song et.al. They developed a mathematical model to mimic tumor growth in the context of 

chemotherapy in order to gain a better grasp of the mechanisms underlying treatment. Our system's dimensional 

consistency is guaranteed since the measurement units on the right and left sides of the equations are consistent. This has 

been achieved by changing the parameters in the equations on the right-hand side, for example by increasing them to ϑ.  

In our study, unlike the studies in the literature, we specifically focused on the effect of chemotherapy drug concentration 

on the destruction of tumor cells. Thus, medical scientists adjust the dose of chemotherapy drug accordingly and plan the 

treatment accordingly. 

Motivated by the aforementioned research, we created a mathematical model in this work that uses fractional derivatives 

in Caputo to investigate the relationship between immune cells, tumor cells and chemotherapy drugs. It is more 

advantageous to use mathematical modeling that includes Caputo fractional order derivatives. Because there is a memory 

effect in mathematical modeling that includes fractional order derivatives, and it is easier and takes less time for the 

system to reach stability than mathematical modeling that includes integer order derivatives. There are multiple definitions 

for fractional order derivatives. It is common to apply both the the Riemann-Liouville and the Caputo definitions. The 

Caputo derivative has been applied to enhance comprehension of the characteristics of the physical state and expand its 

relevance to practical problems, as it alone necessitates initial conditions given by the integer order derivative. For a 

problem to be interpreted physically, the derivative of the constant must be equal to zero. For this reason, it is more 

appropriate to use the Caputo fractional derivative to physically interpret the initial conditions. Additionally, the Laplace 

transform of the Caputo derivative requires physically interpretable initial conditions. These features have made the 

Caputo derivative more preferred in practice. We have also seen how important chemotherapy drugs are in the fight 

against cancer. Thus, by carrying out an insightful and guiding study for scientists dealing with medicine and biology, the 

importance of mathematical modeling containing fractional order derivatives in the treatment of cancer diseases has been 

emphasized. 
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2. Preliminaries 

To help you understand this content, we have included some introductory explanations of fractional calculus in this section 

[15]. 

Definition 1. Order 𝜗 fractional integral is represented by  

 
𝐼𝜗𝑓(𝑡) = ∫

(𝑡 − 𝑠)𝜗−1

𝛤(𝜗)
𝑓(𝑠)

𝑡

0

𝑑𝑠,  

where   𝑡 > 0, 𝜗 > 0 , the fractional derivative is defined by 

 
𝐷𝜗𝑓(𝑡) = 𝐼𝑛−𝜗𝐷𝑛𝑓(𝑡) (𝐷 =

𝑑

𝑑𝑡
),  

where  𝜗 ∈ (𝑛 − 1, 𝑛),  𝑡 > 0,   𝛤 is the Gamma function. 

Definition 2. 

 

𝐷0
𝐶

𝑡
𝜗𝑓(𝑡) =

{
  
 

  
 

1

𝛤(𝑛 − 𝜗)
∫

(𝑑 𝑑𝑡⁄ )
𝑛

𝑓(𝜏)

(𝑡 − 𝜏)𝜗−𝑛+1

𝑡

0

, 0 ≤ 𝑛 − 1 < 𝜗 < 𝑛,           𝑛 = [𝜗], 𝑛 ∈ 𝑁,

(
𝑑

𝑑𝑡
)
𝑛

𝑓(𝑡),                                                                                       𝜗 = 𝑛, 𝑛 ∈ 𝑁.

                      (1) 

provides an explanation of the Caputo fractional derivative of 𝑓: (0,∞) → ℛ, of order 𝜗 > 0. 

Definition 3. The function 𝑓(𝑡) of order 𝜗 > 0 's Laplace transform (LT) of the Caputo operator is explained by 

                                     𝐿[ 𝐷0
𝐶

𝑡
𝜗𝑓(𝑡)] = 𝑠𝜗𝐹(𝑠) −∑ 𝑓𝑣(0)𝑠𝜗−𝑣−1

𝑛−1

𝑣=0
𝑓𝑣(0).                                                        (2) 

Definition 4. The definition of the gamma function is 𝑅𝑒(𝑧) > 0 utilizing the integral 

 
            𝛤(𝑧) = ∫ 𝑒−𝑡𝑡𝑧−1

∞

0

𝑑𝑡.    
 

Among the basic properties of the gamma function is  

 𝛤(𝑧 + 1) = 𝑧𝛤(𝑧), 

𝛤(𝑛 + 1) = 𝑛! 

 

for 𝑧 ∈ ℂ, 𝑛 ∈ 𝑁0. The gamma function has singular poles at 𝑧 = −𝑛(𝑛 = 0,1,2, … ). 

Definition 5. The Laplace transform (LT) of the function 𝑓(𝑡) = 𝑡𝜗1−1𝐸𝜗,𝜗1(±𝑤𝑡
𝜗) is described as  

 
𝐿[𝑡𝜗1−1𝐸𝜗,𝜗1(±𝑤𝑡

𝜗)] =
𝑠𝜗−𝜗1

𝑠𝜗 ± 𝑤
,      

                                                      (3) 

where 𝐸𝜗,𝜗1  is Mittag-Leffler function. 

Theorem 1 [15,16]. Examine the fractional order scheme that follows: 

                                                         𝑑𝜗𝑋

𝑑𝑡𝜗
= 𝑓(𝑋),     𝑋(0) = 𝑋0,   

                                                                                                                           

.                                                          (4) 

with 𝑋 ∈ ℛ𝑛 and 𝜗 ∈ (0,1]. The system's (4) equilibrium points are the equation's solutions 𝑓(𝑋∗) = 0, and these  

equilibrium points: 

(1) Asymptotically stable ⇔ all the eigenvalues 𝜆𝑖 , 𝑖 = 1,2, … , 𝑛 of the Jacobian matrix 𝐽(𝑋∗) satisfy that 

|arg(𝜆𝑖)| >
𝜗𝜋

2
 . 

(2) Stable ⇔ it is asymptotically stable or the eigenvalues 𝜆𝑖 , 𝑖 = 1,2, … , 𝑛 of 𝐽(𝑋∗) that satisfy |arg(𝜆𝑖)| =
𝜗𝜋

2
 if 

have the same geometric multiplicity and algebraic multiplicity. 

(3) Unstable ⇔ eigenvalues 𝜆𝑖 for some 𝑖 = 1,2, … , 𝑛 of 𝐽(𝑋∗) satisfy |arg(𝜆𝑖)| <
𝜗𝜋

2
. 
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3. Mathematical Modelling 

It is possible to forecast how cancer cells will grow and spread as well as how chemotherapy medications will affect these 

cells using mathematical models. Many diseases can be treated and their ability to spread inhibited by mathematical 

models. Our goal is to use these mathematical models to track the disease's progress while also advancing science by 

watching how the disease affects individuals. Many individuals die from cancer, a disease that has become more common 

over time. We take into consideration three subclasses: immune system cells, tumor cells, and chemotherapy drugs in 

order to analyze the impact of these drugs and the spread of cancer cells on these cells. Tumor cell 𝑇, immune system cell 

𝐼 , chemotherapy medication 𝐷 , and population as a whole are denoted. The following is the suggested fractional order 

model: 

 
 𝐷𝜗𝑇(𝑡) = 𝑠1

𝜗𝑇 (1 −
𝑇

𝑘1
) − 𝜃1

𝜗𝑇𝐼 − 𝑑1
𝜗𝑇 − 𝜃2

𝜗𝐷𝑇,         

𝐷𝜗𝐼(𝑡) = 𝑠2
𝜗𝐼 (1 −

𝐼

𝑘2
) − 𝜃3

𝜗𝐷𝐼(𝑡) − 𝑑2
𝜗𝐼(𝑡),                

                        𝐷𝜗𝐷(𝑡) = −γ𝜗𝐷 + 𝑉𝜗(𝑡).   

 

 

                (5) 

with initial settings    𝑇(0) = 𝑇0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0, 𝐷(0) = 𝐷0 ≥ 0. 

Table 1 provides a summary of the parameter descriptions. To make sure they comply with the model's features (5), these 

values are extracted from [10,19]. It is important to note that we take all parameters to be non-negative [10, 19]. 

This section may be divided into subheadings. It should provide a concise and precise description of the experimental 

results, their interpretation, as well as the experimental conclusions that can be drawn. 

Table 1. The biological significance of the numerical quantities and parameters 

Parameters Meaning Value Unit Source 

𝑇0 Density of free tumors 1  𝑚𝑚3/cells [10] 

𝐼0 Immunity cells initial concentration 1   𝑚𝑚3/cells [10] 

𝐷0 Chemotherapy Concentration Drug 1  𝑚𝑚3/cells [10] 

𝛾 Decay rate of chemotherapy drug 6.4 (1/day) [10] 

𝑑2 The natural death rate of Immune system cells 0.07 [19] [19] 

𝑠1 Logistic growth rate of Tumor cells  

0.18 

(1/day) [10]  

𝑘1 The carrying capacity of tumor cells 10 (1/cells) [19] 

𝜃1 

 

The rate of tumor cell death brought on by 

immune system cell attack 

0.9 (1/day) [10] 

𝑑1 Natural death rate of Tumor cells 0.03 (1/day) [10] 

𝜃2 Fractional tumor cells killed by chemotherapy 0.9 (1/cells) [10] 

𝜃3 Decay rate of immune system cells killed by 

chemotherapy 

0.9 (1/cells) [10] 

𝑉(𝑡) Chemotherapy drug inflow and outflow with 

time dependence 

1 (1/day) [10] 

𝑠2 Logistic growth rate of immune System Cells 0.4 (cells/day) [19] 

𝑘2 The Carrying capacity of immune system 20 (1/cells) [19] 
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4. Existence and Uniqueness 

Now let's evaluate system (5) with its original configuration  𝑇(0) = 𝑇0, 𝐼(0) = 𝐼0, 𝐷(0) = 𝐷0. For the system (5), the 

formula is: 

 𝐷𝜗𝑋(𝑡) = 𝐵1𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉, 

𝑋(0) = 𝑋0 , 

 

                                (6) 

 

 where 

 

𝑋(𝑡) = (

𝑇(𝑡)

𝐼(𝑡)

𝐷(𝑡)
),  𝑋(0) = (

𝑇(0)

𝐼(0)

𝐷(0)
), 

 

 

𝐵1 = (

𝑠1
𝜗 − 𝑑1

𝜗 0 0

0 𝑠2
𝜗 − 𝑑2

𝜗 0

0 0 −𝛾𝜗
) , 𝐵2 = (

−
𝑠1
𝜗

𝑘1
−𝜃1

𝜗 −𝜃2
𝜗

0 0 0
0 0 0

),  𝐵3 = (

0 0 0

0 −
𝑠2
𝜗

𝑘2
0

0 0 0

), 𝑉 = (
0
0

𝑉𝜗(𝑡)
). 

 

Definition 7 [15].  Let 𝐶∗[0, 𝜏∗] be the class of continuous column 𝑋(𝑡) whose components 𝑇, 𝐼, 𝐷 ∈ 𝐶∗[0, 𝜏∗] are the 

class of continuous functions on the interval [0, 𝜏∗]. The norm of 𝑋 ∈ 𝐶∗[0, 𝜏∗] is given by  

 ‖𝑋‖ = sup
𝑡
|𝑒−𝑁𝑡𝑇(𝑡)| + sup

𝑡
|𝑒−𝑁𝑡𝐼(𝑡)| + sup

𝑡
|𝑒−𝑁𝑡𝐷(𝑡)|,  

where 𝑁 is a natural number and when 𝑡 > 𝛿 ≥ 𝑚, we write  𝐶𝛿
∗[0, 𝜏∗] and 𝐶𝛿[0, 𝜏

∗]. 

Definition 8 [15].   𝑋 ∈ 𝐶∗[0, 𝜏∗] is a solution of IVP (6) if  

(1) (𝑡, 𝑋(𝑡)) ∈ 𝐷, 𝑡 ∈ [0, 𝜏∗] where 𝐷 = [0, 𝜏∗] × 𝐾, 𝐾 = {(𝑇, 𝐼, 𝐷) ∈ ℛ+
3 : |𝑇| ≤ 𝑝, |𝐼| ≤ 𝑟, |𝐷| ≤ 𝑤}, 

𝑝, 𝑟, 𝑤 ∈ ℛ+ are constants. 

(2) 𝑋(𝑡) satisfies (6). 

Theorem 2. The unique solution for the IVP (6) is 𝑋 ∈ 𝐶∗[0, 𝜏∗]. 

Proof. The equation in (6) can be stated as follows due to the inherent characteristics of the fractional calculus:  

 
𝐼1−𝜗

𝑑

𝑑𝑡
𝑋(𝑡) = 𝐵1𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉. 

 

Operating by  𝐼𝜗 we achieve 

 𝑋(𝑡) = 𝑋(0) + 𝐼𝜗(𝐵1𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉).                                     (7) 

Let us now  𝐹: 𝐶∗[0, 𝜏∗] → 𝐶∗[0, 𝜏∗]  described by 

     𝐹𝑋(𝑡) = 𝑋(0) + 𝐼𝜗(𝐵1𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉).                               (8) 

Then 

 𝑒−𝑁𝑡‖𝐹𝑋 − 𝐹𝑌‖ = 𝑒−𝑁𝑡𝐼𝜗 (𝐵1(𝑋(𝑡) − 𝑌(𝑡)) + 𝑇(𝑡)𝐵2(𝑋(𝑡) − 𝑌(𝑡)) + 𝐼(𝑡)𝐵3(𝑋(𝑡) − 𝑌(𝑡))),  

                                              ≤ |
1

𝛤(𝜗)
∫ (𝑡 − 𝑠)𝜗−1𝑒−𝑁(𝑡−𝑠)(𝑋(𝑠) − 𝑌(𝑠))𝑒−𝑁𝑠𝑑𝑠
𝑡

0
| (𝐵1 + 𝑝𝐵2 + 𝑟𝐵3),     

                                         ≤ (𝐵1 + 𝑝𝐵2 + 𝑟𝐵3) |
1

𝛤(𝜗)
∫ (𝑢)𝜗−1𝑒−𝑁(𝑢)
𝑡

0
| ‖𝑋 − 𝑌‖, 

≤
(𝐵1 + 𝑝𝐵2 + 𝑟𝐵3) |

𝛾(𝜗,𝑁𝑡)

𝛤(𝜗)
|

𝑁𝜗
‖𝑋 − 𝑌‖,                                         

 

where  𝛾(𝜗, 𝑁𝑡) is the lower incomplete gamma function and 𝑢 = 𝑡 − 𝑠. Since 𝑁 is an arbitrary, we accept that              

𝑁𝜗 ≥ 𝐵1 + 𝑝𝐵2 + 𝑟𝐵3, then we get ‖𝐹𝑋 − 𝐹𝑌‖ ≤ ‖𝑋 − 𝑌‖. In (8), operator 𝐹 has a fixed point. Therefore, (7) has a 

special solution. 𝑋 ∈ 𝐶∗[0, 𝜏∗]. 

In (7), we have  
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𝑋(𝑡) = 𝑋(0) +

𝑡𝜗

𝛤(𝜗 + 1)
(𝐵1𝑋(0) + 𝑇(0)𝐵2𝑋(0) + 𝐼(0)𝐵3𝑋(0)) 

                                           +𝐼𝜗+1(𝐵1𝑋
′(𝑡) + 𝑇′(𝑡)𝐵2𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋

′(𝑡) + 𝐼′(𝑡)𝐵3𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋
′(𝑡)). 

 

 
        𝑒−𝑁𝑡𝑋′(𝑡) = 𝑒−𝑁𝑡

𝑡𝜗

𝛤(𝜗)
(𝐵1𝑋(0) + 𝑆(0)𝐵2𝑋(0) + 𝐼(0)𝐵3𝑋(0) + 𝑉) 

                      +𝐼𝜗(𝐵1𝑋
′(𝑡) + 𝑇′(𝑡)𝐵2𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋

′(𝑡) + 𝐼′(𝑡)𝐵3𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋
′(𝑡)). 

 

The assumption 𝑋′ ∈ 𝐶𝛿
∗[0, 𝜏∗]. From (7) we have 

 𝑑𝑋(𝑡)

𝑑𝑡
=
𝑑

𝑑𝑡
𝐼𝜗(𝐵1𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉). 

 

Operating by 𝐼1−𝜗 we get 

 
𝐼1−𝜗

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐼1−𝜗

𝑑

𝑑𝑡
𝐼𝜗(𝐵1𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉).  

 

                                  𝐷𝜗𝑋(𝑡) = (𝐵1𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉),       

and 

  𝑋(0) = 𝑋0 + 𝐼
𝜗(𝐵1𝑋(𝑡) + 𝑇(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉).  

Consequently, Equation (7) and IVP (6) are equal. 

5. Equilibria and Their Stabilities 

The following formula can be used to find the equilibrium positions in system (5): 

 
𝐷𝜗𝑇(𝑡) = 𝑠1

𝜗𝑇 (1 −
𝑇

𝑘1
) − 𝜃1

𝜗𝑇𝐼 − 𝑑1
𝜗𝑇 − 𝜃2

𝜗𝐷𝑇 = 0,           

𝐷𝜗𝐼(𝑡) = 𝑠2
𝜗𝐼 (1 −

𝐼

𝑘2
) − 𝜃3

𝜗𝐷𝐼(𝑡) − 𝑑2
𝜗𝐼(𝑡) = 0,                    

                       𝐷𝜗𝐷(𝑡) = −𝛾𝜗𝐷 + 𝑉𝜗(𝑡)=0.  

 

 

             (9) 

Then the equilibrium points are: 

                           𝐸1 = (0,0, 𝑉
𝜗𝛾−𝜗),   

𝐸2 = (0, 𝛾
−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗), 𝑉𝜗𝛾−𝜗),                                           

 𝐸3 = (𝛾
−𝜗𝑘1𝑠1

−𝜗(−𝛾𝜗𝑑1
𝜗 + 𝛾𝜗𝑠1

𝜗 − 𝑉𝜗𝜃2
𝜗), 0, 𝑉𝜗𝛾−𝜗),                                             

                            𝐸4 = (𝛾
−𝜗𝑘1𝑠1

−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑠1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑑2

𝜗𝑘2𝜃1
𝜗 − 𝛾𝜗𝑘2𝑠2

𝜗𝜃1
𝜗 − 𝑉𝜗𝑠2

𝜗𝜃2
𝜗                        

+ 𝑉𝜗𝑘2𝜃1
𝜗𝜃3

𝜗), 𝛾−𝜗𝑘2𝑠2
−𝜗(−𝛾𝜗𝑑2

𝜗 + 𝛾𝜗𝑠2
𝜗 − 𝑉𝜗𝜃3

𝜗), 𝑉𝜗𝛾−𝜗). 

 

Theorem 3. Let 𝐸1 be the model (5) equilibrium points. Pretend that   

 𝑠1
𝜗 − 𝑑1

𝜗 < 𝜃2
𝜗𝑉𝜗𝛾−𝜗  

and  

 𝑠2
𝜗 − 𝑑2

𝜗 < 𝜃3
𝜗𝑉𝜗𝛾−𝜗  

then 𝐸1 is locally asymptotically stable. 

Proof. Model (5)'s Jacobian matrix, as determined at equilibrium point 𝐸1,  is provided by 

 

𝐽(𝐸1) = (

𝑠1
𝜗 − 𝑑1

𝜗 − 𝜃2
𝜗𝑉𝜗𝛾−𝜗 0 0

0 𝑠2
𝜗 − 𝑑2

𝜗 − 𝜃3
𝜗𝑉𝜗𝛾−𝜗 0

0 0 −𝛾𝜗
), 

 

the characteristic equation 

 |𝐽(𝐸1) − 𝜆𝐼| = 0   

states that, 
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 (−𝛾𝜗 − 𝜆)[(𝑠1
𝜗 − 𝑑1

𝜗 − 𝜃2
𝜗𝑉𝜗𝛾−𝜗 − 𝜆)(𝑠2

𝜗 − 𝑑2
𝜗 − 𝜃3

𝜗𝑉𝜗𝛾−𝜗 − 𝜆)] = 0,  

eigenvalues of 𝐽(𝐸1) are: 

  𝜆1 = −𝛾𝜗,                                  

 𝜆2 = 𝑠1
𝜗 − 𝑑1

𝜗 − 𝜃2
𝜗𝑉𝜗𝛾−𝜗,           

 𝜆3 = 𝑠2
𝜗 − 𝑑2

𝜗 − 𝜃3
𝜗𝑉𝜗𝛾−𝜗. 

 𝜆𝑖 < 0, |arg(𝜆𝑖)| = 𝜋 >
𝜗𝜋

2
, 𝑖 = 1,2,3. 

 

The equilibrium point is  𝐸1, which is locally asymptotically stable according to Theorem 1. 

Theorem 4. The equilibrium point 𝐸2 of the model (5) is asymptotically stable if 

 𝑠1
𝜗 − 𝑑1

𝜗 < 𝜃1
𝜗(𝛾−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗) + 𝜃2

𝜗𝑉𝜗𝛾−𝜗)  

and 

 𝑠2
𝜗 − 𝑑2

𝜗 < 2𝛾−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑2

𝜗 + 𝛾𝜗𝑠2
𝜗 − 𝑉𝜗𝜃3

𝜗) + 𝜃3
𝜗𝑉𝜗𝛾−𝜗 .  

Proof. Model (5)'s Jacobian matrix, as determined at equilibrium point 𝐸2 ,  is provided by 

 

𝐽(𝐸2) = (

 𝑎11 0 0
0 𝑎22 𝑎23
0 0 −𝛾

), 

 

 𝑎11  = 𝑠1
𝜗 − 𝑑1

𝜗 − 𝜃1
𝜗(𝛾−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗) − 𝜃2

𝜗𝑉𝜗𝛾−𝜗), 

 𝑎22 = 𝑠2
𝜗 − 𝑑2

𝜗 − 2𝛾−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑2

𝜗 + 𝛾𝜗𝑠2
𝜗 − 𝑉𝜗𝜃3

𝜗) − 𝜃3
𝜗𝑉𝜗𝛾−𝜗,  

 𝑎23 = −𝜃3
𝜗𝛾−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗). 

 

The characteristic equation |𝐽(𝐸2) − 𝜆𝐼| = 0 states that 

 (−𝛾𝜗 − 𝜆)[(𝑠1
𝜗 − 𝑑1

𝜗 − 𝜃1
𝜗(𝛾−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗) − 𝜃2

𝜗𝑉𝜗𝛾−𝜗) − 𝜆)(𝑠2
𝜗 − 𝑑2

𝜗

− 2𝛾−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑2

𝜗 + 𝛾𝜗𝑠2
𝜗 − 𝑉𝜗𝜃3

𝜗) − 𝜃3𝑉
𝜗𝛾−𝜗 − 𝜆)] = 0, 

 

we get 

  𝜆1 = −𝛾𝜗, 

 𝜆2 = 𝑠1
𝜗 − 𝑑1

𝜗 − 𝜃1
𝜗(𝛾−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗) − 𝜃2

𝜗𝑉𝜗𝛾−𝜗), 

 𝜆3 = 𝑠2
𝜗 − 𝑑2

𝜗 − 2𝛾−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑2

𝜗 + 𝛾𝜗𝑠2
𝜗 − 𝑉𝜗𝜃3

𝜗) − 𝜃3
𝜗𝑉𝜗𝛾−𝜗. 

 𝜆𝑖 < 0, |arg(𝜆𝑖)| = 𝜋 >
𝜗𝜋

2
, 𝑖 = 1,2,3. 

 

The equilibrium point is  𝐸2 , which is locally asymptotically stable according to Theorem 1. 

Theorem 5. The equilibrium point 𝐸3 of the model (5) is asymptotically stable if 

 𝑠1
𝜗 − 𝑑1

𝜗 < 2𝛾−𝜗(−𝛾𝜗𝑑1
𝜗 + 𝛾𝜗𝑠1

𝜗 − 𝑉𝜗𝜃2
𝜗) + 𝜃2

𝜗𝑉𝜗𝛾−𝜗  

and 

 𝑠2
𝜗 − 𝑑2

𝜗 < 𝜃3
𝜗𝑉𝜗𝛾−𝜗.  

Proof.  Model (5)'s Jacobian matrix, as determined at equilibrium point 𝐸3 ,  is provided by 

 
   𝐽(𝐸3) = (

 𝑎11  𝑎12 𝑎13
0 𝑎22 0
0 0 −𝛾

), 
 

               𝑎11 = 𝑠1
𝜗 − 𝑑1

𝜗 − 2𝛾−𝜗(−𝛾𝜗𝑑1
𝜗 + 𝛾𝜗𝑠1

𝜗 − 𝑉𝜗𝜃2
𝜗) − 𝜃2

𝜗𝑉𝜗𝛾−𝜗,   

                𝑎12 = −𝜃1𝛾
−𝜗𝑘1𝑠1

−𝜗(−𝛾𝜗𝑑1
𝜗 + 𝛾𝜗𝑠1

𝜗 − 𝑉𝜃2
𝜗), 

                𝑎13 = −𝜃2𝛾
−𝜗𝑘1𝑠1

−𝜗(−𝛾𝜗𝑑1
𝜗 + 𝛾𝜗𝑠1

𝜗 − 𝑉𝜃2
𝜗), 
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                𝑎22 = 𝑠2
𝜗 − 𝑑2

𝜗 − 𝜃3
𝜗𝑉𝜗𝛾−𝜗. 

The characteristic equation 

 |𝐽(𝐸3) − 𝜆𝐼| = 0  

states that, 

 (−𝛾𝜗 − 𝜆)[(𝑠1
𝜗 − 𝑑1

𝜗 + 2𝑑1
𝜗 − 2𝑠1

𝜗 + 2𝛾−𝜗𝑉𝜗𝜃2
𝜗 − 𝜃2

𝜗𝑉𝜗𝛾−𝜗 − 𝜆)(𝑠2
𝜗 − 𝑑2

𝜗 − 𝜃3
𝜗𝑉𝜗𝛾−𝜗 − 𝜆)] = 0,  

we get 

   𝜆1 = −𝛾𝜗, 

 𝜆2 = 𝑠1
𝜗 − 𝑑1

𝜗 − 2𝛾−𝜗(−𝛾𝜗𝑑1
𝜗 + 𝛾𝜗𝑠1

𝜗 − 𝑉𝜗𝜃2
𝜗) − 𝜃2

𝜗𝑉𝜗𝛾−𝜗,   

 𝜆3 = 𝑠2
𝜗 − 𝑑2

𝜗 − 𝜃3
𝜗𝑉𝜗𝛾−𝜗. 

 𝜆𝑖 < 0, |arg(𝜆𝑖)| = 𝜋 >
𝜗𝜋

2
, 𝑖 = 1,2,3. 

 

The equilibrium point is  𝐸3 , which is locally asymptotically stable according to Theorem 1. 

Theorem 6. The co-existence equilibrium point 𝐸4 of the model (5) is asymptotically stable if 

 𝑠1
𝜗 − 𝑑1

𝜗 < 2𝛾−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑠1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑑2

𝜗𝑘2𝜃1
𝜗 − 𝛾𝜗𝑘2𝑠2

𝜗𝜃1
𝜗 − 𝑉𝜗𝑠2

𝜗𝜃2
𝜗 + 𝑉𝜗𝑘2𝜃1

𝜗𝜃3
𝜗) 

                                  +𝜃1
𝜗𝛾−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗) + 𝜃2

𝜗𝑉𝜗𝛾−𝜗  

 

and 

 𝑠2
𝜗 − 𝑑2

𝜗 < 2𝛾−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗)𝜃3

𝜗𝑉𝜗𝛾−𝜗.  

Proof.  Model (5)'s Jacobian matrix, as determined at co-existence equilibrium point 𝐸4 ,  is provided by 

 
𝐽(𝐸4) = (

 𝑎11  𝑎12 𝑎13
0 𝑎22 𝑎23
0 0 −𝛾

), 
 

  𝑎11 = 𝑠1
𝜗 − 𝑑1

𝜗 − 2𝛾−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑠1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑑2

𝜗𝑘2𝜃1
𝜗 − 𝛾𝜗𝑘2𝑠2

𝜗𝜃1
𝜗 − 𝑉𝜗𝑠2

𝜗𝜃2
𝜗 + 𝑉𝜗𝑘2𝜃1

𝜗𝜃3
𝜗) 

         −𝜃1
𝜗𝛾−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗) − 𝜃2

𝜗𝑉𝜗𝛾−𝜗 ,    

 𝑎12 = −𝜃1𝛾
−𝜗𝑘1𝑠1

−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑠1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑑2

𝜗𝑘2𝜃1
𝜗 − 𝛾𝜗𝑘2𝑠2

𝜗𝜃1
𝜗 − 𝑉𝜗𝑠2

𝜗𝜃2
𝜗 + 𝑉𝜗𝑘2𝜃1

𝜗𝜃3
𝜗), 

 𝑎13 = −𝜃2𝛾
−𝜗𝑘1𝑠1

−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑠1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑑2

𝜗𝑘2𝜃1
𝜗 − 𝛾𝜗𝑘2𝑠2

𝜗𝜃1
𝜗 − 𝑉𝜗𝑠2

𝜗𝜃2
𝜗 + 𝑉𝜗𝑘2𝜃1

𝜗𝜃3
𝜗), 

 𝑎22 = 𝑠2
𝜗 − 𝑑2

𝜗 < 2𝛾−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗)𝜃3

𝜗𝑉𝜗𝛾−𝜗, 

 𝑎23 = 𝜃3
𝜗𝛾−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗). 

 

The characteristic equation 

 |𝐽(𝐸4) − 𝜆𝐼| = 0  

states that, 

 (−𝛾𝜗 − 𝜆) [((𝑠1
𝜗 − 𝑑1

𝜗 + 2𝑑1
𝜗 − 2𝑠1

𝜗 − 2𝑠2
−𝜗𝑑2

𝜗𝑘2𝜃1
𝜗 − 2𝑘2𝜃1

𝜗

− 2𝛾−𝜗𝑉𝜗𝜃2
𝜗−2𝛾−𝜗𝑠2

−𝜗𝑉𝜗𝑘2𝜃1
𝜗𝜃3

𝜗+𝜃1
𝜗𝑘2𝑠2

−𝜗𝑑2
𝜗 − 𝜃1

𝜗𝑘2 + 𝜃1
𝜗𝛾−𝜗𝑘2𝑠2

−𝜗𝑉𝜗𝜃3
𝜗  

− 𝜃2
𝜗𝑉𝜗𝛾−𝜗) − 𝜆) (𝑠2

𝜗 − 𝑑2
𝜗 + (2𝑑2

𝜗 − 2𝑠2
𝜗 + 2𝛾−𝜗𝑉𝜗𝜃3

𝜗)𝜃3
𝜗 𝑉𝜗𝛾−𝜗 − 𝜆)] = 0, 

 

we get 

               𝜆1 = −𝛾𝜗,  

   𝜆2 = (𝑠1
𝜗 − 𝑑1

𝜗 − 2𝛾−𝜗𝑠2
−𝜗(−𝛾𝜗𝑑1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑠1

𝜗𝑠2
𝜗 + 𝛾𝜗𝑑2

𝜗𝑘2𝜃1
𝜗 − 𝛾𝜗𝑘2𝑠2

𝜗𝜃1
𝜗 − 𝑉𝜗𝑠2

𝜗𝜃2
𝜗 + 𝑉𝜗𝑘2𝜃1

𝜗𝜃3
𝜗)

− 𝜃1
𝜗𝛾−𝜗𝑘2𝑠2

−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗) − 𝜃2

𝜗𝑉𝜗𝛾−𝜗), 

 

             𝜆3 = 𝑠2
𝜗 − 𝑑2

𝜗 − 2𝛾−𝜗(−𝛾𝜗𝑑2
𝜗 + 𝛾𝜗𝑠2

𝜗 − 𝑉𝜗𝜃3
𝜗)𝜃3

𝜗 𝑉𝜗𝛾−𝜗. 

             𝜆𝑖 < 0, |arg(𝜆𝑖)| = 𝜋 >
𝜗𝜋

2
, 𝑖 = 1,2,3.    
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The co-existence equilibrium point is  𝐸4 , which is locally asymptotically stable according to Theorem 1.    

 

 

(A) Unstable Node                                    (B) Stable Node                                       (C) Saddle Point                                                           

         (𝜆1 > 0, 𝜆2 > 0)                                       (𝜆1 < 0, 𝜆2 < 0)                                      (𝜆1 > 0, 𝜆2 < 0)                                  

                                                                                                            

 

     (D) Unstable Spiral                                         (E) Stable Spiral                                                (F) Center 

      (𝜆1 = 𝛼 + 𝑖𝛽, 𝛼 > 0)                                     (𝜆1 = 𝛼 + 𝑖𝛽, 𝛼 < 0)                                         (𝜆1 = 𝑖𝛽)       

Figure 1. Phase Portrait for System (5) 

Since  𝜆𝑖 < 0, 𝑖 = 1,2,3, it has a stable node graph; see Fig.1(B). 

6.Positivity and Boundedness 

Lemma 1 (Generalized Mean Value Theorem). Assume that  𝑤(𝑡) ∈ 𝐶[𝑎, 𝑏] and  𝐷0
𝐶

𝑡
𝜗𝑤(𝑡) ∈ 𝐶[𝑎, 𝑏] for 0 < 𝜗 ≤

1, then 

 
𝑤(𝑡) = 𝑤(𝑎) +

1

𝛤(𝜗)
𝐷0
𝐶

𝑡
𝜗𝑤(𝜏)(𝑡 − 𝑎)𝜗, 

 

where 0 ≤ 𝜏 ≤ 𝑡, ∀𝑡 ∈ (𝑎, 𝑏]. 

Remark 1. If  𝑤 ∈ 𝐶[0, 𝑏] and 𝐷0
𝐶

𝑡
𝜗(𝑤(𝑡)) ≥ 0, ∀𝑡 ∈ (0, 𝑏], then the function 𝑤(𝑡) is non-increasing for all 𝑡 ∈ [0, 𝑏]. 

Theorem 5. The solution of model (5) along with initial settings is bounded in ℛ+
3 . 

Proof. Noting that ℛ+
3  is positivity invariant, the non negative region. 

From system (5), we get 

 𝐷𝜗𝑇(𝑡)𝑇=0 = 0 ≥ 0, 

𝐷𝜗𝐼(𝑡)𝐼=0 = 0 ≥ 0,                                                                                                                                                                             

𝐷𝜗𝐷(𝑡)𝐷=0 = 𝑉𝜗(𝑡) ≥ 0.                                                                                                               

                                                    

                                                   (10)                                             

                                                      

If (𝑇(0), 𝐼(0), 𝐷(0)) ∈ ℛ+
3 ,  The solution of model (5) is therefore unable to escape the hyperplanes 𝑇 = 0, 𝐼 = 0, 

𝐷 = 0 in accordance with system (10) and Remark 1. This means that the region ℛ+
3  is a collection of positive invariants. 

Theorem 6. 

For the system (5), the region 𝑃 = {𝑇(𝑡), 𝐼(𝑡), 𝐷(𝑡) ∈ ℛ+
3 , 0 < 𝑇(𝑡) + 𝐼(𝑡) + 𝐷(𝑡) ≤ 𝑉𝜗(𝑡)𝐶}  is an invariant set that 

is positive. 

Proof.  From model (5) we have 

 𝐷𝜗𝑁(𝑡) = 𝑠1
𝜗𝑇 (1 −

𝑇

𝑘1
) − 𝜃1

𝜗𝑇𝐼 − 𝑑1
𝜗𝑇 − 𝜃2

𝜗𝐷𝑇 + 𝑠2
𝜗𝐼 (1 −

𝐼

𝑘2
) − 𝜃3

𝜗𝐷𝐼(𝑡) − 𝑑2
𝜗𝐼(𝑡) − γ𝜗𝐷 + 𝑉𝜗(𝑡).  
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This gives   

 𝐷𝜗𝑁(𝑡) ≤ 𝑉𝜗(𝑡) + 𝑁.  

When we use the preceding equation with the Laplace Transform, we have  

 
𝑆𝜗𝐿(𝑁) ≤

𝑉𝜗(𝑡)

𝑆
+ 𝐿(𝑁),     

 

this further provides, 

 
𝐿(𝑁) ≤

𝑆−1𝑉𝜗(𝑡)

(𝑆𝜗 − 1)
. 

 

When we use the previous equation 𝑁 ≤ 𝑉𝜗(𝑡)𝑡𝜗𝐸𝜗,𝜗+1(𝑡
𝜗)  with the Laplace Transform. 

From Mittag Leffler function definition, we can infer if  𝑇0, 𝐼0, 𝐷0 ∈ ℛ+
3 , then 

    𝑁(𝑡) ≤  𝑉𝜗(t)𝐸𝜗,𝜗+1(𝑡
𝜗), 

   𝑁(𝑡) ≤  𝑉𝜗(t)𝐶, 𝐶 > 0. 

 

This suggests that because 𝑁(𝑡) is bounded,  𝑇(𝑡), 𝐼(𝑡) and 𝐷(𝑡), are also bounded. 

7. Numerical Scheme 

We examine the dynamics of the proposed fractional order model (5) using the Caputo fractional operator. The suggested 

nonlinear fractional order system is numerically modeled using the Adams type estimator-corrector approach [25–29]. In 

relation to the Caputo operator of order 𝜗,  the following Cauchy type ODE is considered:   

 𝐷0
𝐶

𝑡
𝜗𝜙(𝑡) = 𝜙(𝑡, 𝜙(𝑡)), 𝜙(𝑏)(0) = 𝜙0

𝑏, 0 < 𝜗 < 1,0 < 𝑡 ≤ 𝜏 ,                                                                                   (11) 

where 𝑏 = 0,1, . . . , 𝑛 − 1, and 𝑛 = [𝜗]. Eq. (11) can be turned to the Volterra equation: 

 
𝜙(𝑡) =∑ 𝜙0

(𝑏) 𝑡𝑏

𝑏!

𝑛−1

𝑏=0
+

1

𝛤(𝜗)
∫ (𝑡 − 𝑠)𝜗−1𝜙(𝑠, 𝜙(𝑠))𝑑𝑠.
𝑡

0
                                                                                               

                                       (12) 

Considering the numerical solutions of the model with the proposed predictor-corrector scheme associated with the Adam-

Bashforth-Moulton algorithm [26], we can take ℎ = 𝜏 𝑁⁄ , 𝑡𝑧 = 𝑧ℎ, and 𝑧 = 0,1, . . . , 𝑁 ∈ 𝑍+, by letting 𝜙𝑧 ≈ 𝜙(𝑡𝑧), the 

accompanying corrector formula [29], which is as follows, can be used to discretize it: 

 
  𝑇𝑞+1 =∑ 𝑇0

(𝑧) 𝑡𝑞+1
𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑧,𝑞+1)

𝑞

𝑧=0
(𝑠1

𝜗𝑇𝑧 (1 −
𝑇𝑧
𝑘1
) − 𝜃1

𝜗𝑇𝑧𝐼𝑧 − 𝑑1
𝜗𝑇𝑧 − 𝜃2

𝜗𝐷𝑧𝑇𝑧)

+
ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑞+1,𝑞+1)

𝑞

𝑧=0
(𝑠1

𝜗𝑇𝑞+1
𝑃𝐹 (1 −

𝑇𝑞+1
𝑃𝐹

𝑘1
) − 𝜃1

𝜗𝑇𝑞+1
𝑃𝐹 𝐼𝑞+1

𝑃𝐹 − 𝑑1
𝜗𝑇𝑞+1

𝑃𝐹

− 𝜃2
𝜗𝐷𝑞+1

𝑃𝐹 𝑇𝑞+1
𝑃𝐹 ), 

 
𝐼𝑞+1 =∑ 𝐼0

(𝑧) 𝑡𝑞+1
𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑧,𝑞+1)

𝑞

𝑧=0
(𝑠2

𝜗𝐼𝑧 (1 −
𝐼𝑧
𝑘2
) − 𝜃3

𝜗𝐷𝑧𝐼𝑧 − 𝑑2
𝜗𝐼𝑧)

+
ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑞+1,𝑞+1)

𝑞

𝑧=0
(𝑠2

𝜗𝐼𝑞+1
𝑃𝐹 (1 −

𝐼𝑞+1
𝑃𝐹

𝑘2
) − 𝜃3

𝜗𝐷𝑞+1
𝑃𝐹 𝐼𝑞+1

𝑃𝐹 − 𝑑2
𝜗𝐼𝑞+1
𝑃𝐹 ), 

 

 
𝐷𝑞+1 =∑ 𝑅0

(𝑧) 𝑡𝑞+1
𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑧,𝑞+1)

𝑞

𝑧=0
(−𝛾𝜗𝐷𝑧 + 𝑉

𝜗(𝑡))

+
ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑞+1,𝑞+1)

𝑞

𝑧=0
(−𝛾𝜗𝐷𝑧 + 𝑉

𝜗(𝑡)) ,

 

 

 

 

where 

 
           𝑇𝑞+1

𝑃𝐹 =∑ 𝑇0
(𝑧) 𝑡𝑞+1

𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 1)
∑ (𝑗𝑧,𝑞+1)

𝑞

𝑧=0
(𝑠1

𝜗𝑇𝑧 (1 −
𝑇𝑧
𝑘1
) − 𝜃1

𝜗𝑇𝑧𝐼𝑧 − 𝑑1
𝜗𝑇𝑧 − 𝜃2

𝜗𝐷𝑧𝑇𝑧), 
 

 
𝐼𝑞+1
𝑃𝐹 =∑ 𝐼0

(𝑧) 𝑡𝑞+1
𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 1)
∑ (𝑗𝑧,𝑞+1)

𝑞

𝑧=0
(𝑠2

𝜗𝐼𝑧 (1 −
𝐼𝑧
𝑘2
) − 𝜃3

𝜗𝐷𝑧𝐼𝑧 − 𝑑2
𝜗𝐼𝑧), 
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𝐷𝑞+1
𝑃𝐹 =∑ 𝐷0

(𝑧) 𝑡𝑞+1
𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 1)
∑ (𝑗𝑧,𝑞+1)

𝑞

𝑧=0
(−𝛾𝜗𝐷𝑧 + 𝑉

𝜗(𝑡)), 
 

and 

 

𝑝𝑧,𝑞+1 = {

𝑞𝜗+1 − (𝑞 − 𝜗)(𝑞 + 1)𝜃 ,                                                          𝑖𝑓 𝑧 = 0,

(𝑞 − 𝑧 + 2)𝜗+1 + (𝑞 − 𝑧)𝜗+1 − 2(𝑞 − 𝑧 + 1)𝜗+1,         𝑖𝑓  1 ≤ 𝑧 ≤ 𝑞,
1,                                                                                                        𝑖𝑓  𝑧 = 𝑞 + 1,

 

 

           (13) 

where 

 𝑗𝑧,𝑞+1 = (𝑞 + 1 − 𝑧)
𝜗 − (𝑞 − 𝑧)𝜗.  

8. Numeric Simulation 

In this part, the Adams-Bashforth-Moulton Predictor-Corector method [27] is used to derive numerical solutions for 

system (5) using the parameters listed in Table 1. Numerical simulations are utilized to investigate the impact of the 

modifications. Depending on the system parameters (5) and different values of the fractional derivative of 𝜗, the behavior 

of the system is examined. Table 1 gives the parameter values for the numerical simulations. 

The fluctuation of cancer cells over time for various fractional derivatives is shown in Figure 2. It is observed that tumor 

cells decrease over time and reach stability on approximately the 5th day. In the case of the Caputo fractional derivative, 

as 𝜗 decreases from 1, it takes longer for tumor cells to reach stability. Figure 3 shows how immune system cells evolve 

over time for various fractional derivatives. It is observed that the immune system cells proliferate rapidly, reaching 

stability in approximately the 30th day, and in the integer-ordered state, it takes less time to reach the equilibrium point. 

The amount of immune system cells appears to decrease as the fractional derivative decreases from 1 to 0 (not equal to 

zero). Figure 4 shows how the chemotherapeutic drug concentration changes over time for various fractional derivatives. 

Figure 4 shows that the chemotherapy drug concentration decreases over time and reaches stability after approximately 

day 2. Here again, it takes less time for the fractional derivative to reach stability in the integer case.  

Moreover, by varying the 𝜗 parameter while keeping other parameters constant, the fluctuation of the concentration of 

immune system cells, tumor cells and chemotherapy drug over time has been examined in Figures 5,6,7. The value of 𝜗 

is 0.90. Figure 5 shows that as 𝛾 (the rate of degradation of chemotherapy drug) decreases, the number of tumor cells 

increases, reaching stability after approximately day 5. This is a situation we encounter in real life as well. Because the 

chemotherapy drug fights cancer. When the concentration of the drug decreases, the number of cancer cells increases. As 

shown in Figure 6, as 𝛾 (the degradation rate of the chemotherapy drug) decreases, there is a corresponding decrease in 

immune cells at 𝛾 =1.4 and 𝛾 =2.4, and an increase in immune cells at 𝛾 =4.4 and 𝛾 =6.4. This is a situation that also 

exists biologically. Because if the breakdown rate of the chemotherapy drug decreases, immune cells cannot fight cancer 

and decrease. From Figure 7, it is clearly seen that when 𝛾 (degradation rate of chemotherapy drug) decreases, the 

concentration of chemotherapy drug increases. In Figure 8, the effects of the 𝑠1 parameter (logistic growth rate of tumor 

cells) on tumor cells are examined. It is seen that as 𝑠1 decreases, the number of tumor cells decreases and the tumor cells 

reach stability on approximately the 5th day. This is also valid biologically. Because as the logistic growth rate, that is, 

the reproduction rate, of tumor cells increases, the proportion of tumor cells also increases. 
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Figure 2. Tumor cell changes over time for different fractional order derivatives 

 

Figure 3. Immune system cells changes over time for different fractional order derivatives 
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Figure 4. Chemotherapy drug changes over time for different fractional order derivatives 

 

Figure 5. Tumor cells changes over time for the various 𝛾 values and 𝜗=0.9 
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Figure 6. Immune system cells changes over time for the various 𝛾 values and 𝜗=0.9 

 

Figure 7. Chemoterapy drug changes over time for the various 𝛾 values and 𝜗=0.9 
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Figure 8. Tumor cells changes over time for the various 𝑠1 values and 𝜗=0.9 

9. Discussion and Conclusion 

The system of fractional differential equations (5) with Caputo fractional derivative, which represents the Caputo 

fractional graded cancer-immune system model, is discussed in this article. It has been determined that, under certain 

particular conditions, the equilibrium points of model (5) have been asymptotically stable by examining the local 

asymptotic stability of the tumor-free and tumor infection fixed points of the system. The existence and uniqueness of the 

model are then looked at. To confirm the theoretical outcomes, numerical simulations are also obtained. For this model, 

numerical simulations are provided that account for various fractional orders and parameter values. To look into the 

behavior of the system and see what happens when the fractional derivative is changed, shapes have been created for a 

range of 𝜗 values. In summary, the fractional model provides a better fit to the experimental data than the integer order 

model. The majority of research on biological system modeling has focused on integer-order ordinary differential 

equations. The dynamics of diseases have been better understood through the use of mathematical models based on integer 

order ordinary differential equations. Fractional-order differential equation models, on the other hand, have greater 

benefits than integer-order mathematical models. Unlike integer order models, fractional order models take the memory 

effect into account. This specific characteristic would make sense because memory is one of the immune system's core 

functions. In terms of both biology and mathematics, the immune system is one of the most intriguing systems. The 

majority of immune effectors perform several tasks due to its acknowledged multifunctional and multipathway nature. 

Furthermore, the immune system is more resilient since several effectors normally carry out each activity. Because 

fractional order differential equations are intrinsically linked to systems that possess memory in tumor-immune 

interactions, they are used. These models' non-local characteristics, which are absent from differential operators of integer 

order, are their most essential property. We refer to the feature that a model's subsequent stage is dependent upon all of 

its previous stages in addition to its current state. Conversely, fractional derivatives are crucial for explaining how memory 

affects dynamical systems. The use of fractional order differential equations aids in the reduction of modeling errors 

brought on by overlooked parameters. Nonetheless, it has proven possible to effectively use fractional calculus in 

conjunction with instantaneous time to accomplish realistic representation of a physical process. It also depends on the 

past events' history. 

Despite the fact that the fractional derivative has no physical meaning, fractional order models can be supported by 

demonstrating that they fit experimental data more closely than integer order models. Drawing on the preceding discourse, 

the aim of this research is to examine a fractional-order mathematical framework and substantiate it by demonstrating its 
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superiority over the integer-order model in fitting actual data. Comments on biological science are provided. Memory 

trace and hereditary features are taken into consideration to demonstrate the advantages of fractional order modeling. 

Based on the analytical results, it has been concluded that the Caputo fractional derivative yields more accurate results 

than the integer order derivativeIn other words, compared to integer order derivatives, fractional order derivatives stabilize 

faster. According to our research, a high drug concentration results in a notable reduction in tumor cell count. Therefore, 

the concentration of chemotherapy drugs is important while treating cancer. Examined the outcomes of the simulation 

demonstrated how the alteration in 𝜗 impacted the system's dynamic behavior. 

Consequently, it has been shown that there have been considerable variations in the quantity of immune system cells, 

tumor cells, and chemotherapy medication concentration. We believe that scholars in the domains of mathematics and 

medicine will greatly benefit from this work. We believe that this multidisciplinary work will pave the way for more 

research along these lines and provide insight into how this data might be used in the future for the mathematical modelling 

of cancer. 
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