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In this study, the Laplacian matrix concept for the power graph of a finite cyclic 

group is redefined by considering the block matrix structure. Then, with the help of 

the eigenvalues of the Laplacian matrix in question, the concept of Laplacian energy 

for the power graphs of finite cyclic groups was defined and introduced into the 

literature. In addition, boundary studies were carried out for the Laplacian energy in 

question using the concepts the trace of a matrix, the Cauchy-Schwarz inequality, the 

relationship between the arithmetic mean and geometric mean, and determinant. 

Later, various results were obtained for the Laplacian energy in question for cases 

where the order of a cyclic group is the positive integer power of a prime. 

 
1. Introduction 

 

The power graph 𝑃(𝐺) of a finite group 𝐺, is the 

graph whose vertices are represented by the 

elements of 𝐺, and with adjacency relation 

between different two vertices 𝑣𝑥  and 𝑣𝑦 is 

defined as  

 

𝑣𝑥~𝑣𝑦 ⟺  𝑣𝑥 = 𝑣𝑦
𝑚 and 𝑣𝑦 = 𝑣𝑥

𝑚, 𝑚 ∈ ℤ+. 

 

Kelarev and Quinn introduced the concept of 

power graph to the mathematical literature in 

2000 with their work on directed power graphs of 

finite semigroups [1]. Later, the concept of 

directed power graph for groups was defined, and 

various studies were carried out for directed 

power graphs on semigroups and groups [2-3]. 

Chakrabarty et al., inspired by these studies, 

introduced the concept of undirected power 

graph to the mathematical literature with their 

study in 2009 [4]. In addition, this study also 

revealed the relationship between the power 

graph being a complete graph and the structure 

and order of the group. Later, Cameron et al. 

abbreviated the concept of undirected power 

graph and named it as power graph [5-6] and this 

name passed into the mathematics literature and 

after that, studies for undirected power graphs 

were published under the name of power graph. 

 

Another name that directs the study of power 

graph on the basis of spectral graph theory is 

Chattopadhyay. The study of Chattopadhyay et 

al. in 2018, the adjacency matrix concept was 

redefined on a power graph. Additionally, in this 

study, they obtained bounds for the largest 

eigenvalues of power graphs [7]. 

 

The energy of a graph was originated from the π-

electron energy in the Hückel molecular orbital 

theory and motivated by this study, Gutman in 

1978 defined the energy of a graph [8]. At the 

first time, the concept of graph energy did not 

receive much attention. However, in the past 

decade, the concept of graph energy has become 

popular with its widespread use in both 

theoretical and application areas and many 

different versions have been conceived. One of 
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the most important of these versions is the 

Laplacian energy. The concept of Laplacian 

energy for graphs was defined as the sum of the 

absolute deviations of the eigenvalues of its 

Laplacian matrix by Gutman and Zhou in 2006 

[9]. It is very important to do boundary studies in 

graph theory because it is not always easy to find 

the spectral structures of graphs with a large 

number of points. In this sense, boundary studies 

for the Laplacian energy of a graph has received 

much interest and has appeared frequently in 

many papers. 

 

In this study, for the power graph ona finitecyclic 

group, the concept of Laplacian matrix is 

redefined by considering the block matrix 

structure, and then the concept of Laplacian 

energy is given with the help of Laplacian 

eigenvalues. Briefly mention the structures that 

we will use throughout the study. 

 

Let 𝐶𝑛 be a cyclic group with n elements, 𝑉1 be 

the set of its the identity and generators and 𝑉2 
the set of its remaining elements. Thus |𝑉1| =
1 + 𝜑(𝑛) = 𝑡 (say), where 𝜑(𝑛) is Euler's 𝜑 

function. In this case, the Laplacian matrix can 

be redefined as the block matrix structure below, 

considering the 𝑉1 and 𝑉2 structures. 

 

𝐿 = (
(𝑛Ι − 𝐽)t×t −𝐽t×(n−t)
−𝐽(n−t)×t 𝐿(𝑃(𝑉2))(n−t)×(n−t)

)   

 

 

where J is the matrix with all entires being 1 and 

I is the identity matrix. Also let 𝐿(𝑃(𝑉2)) = (𝑙𝑖𝑗) 

is the Laplacian matrix formed by the elements 

of 𝑉2, i.e., 

 

𝑙𝑖𝑗 = {

−1 ; 𝑖~𝑗

𝑑(𝑖) ; 𝑖 = 𝑗
0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,   

 

where 𝑑(𝑖), is the degree of a vertex 𝑖. The 

Laplacian matrix of the power graph is a 

symmetric and real matrix. Therefore, all 

eigenvalues are real and are given in the 

following order. 

 

𝜇𝑛 ≥ 𝜇𝑛−1 ≥ ⋯ ≥ 𝜇2 ≥ 𝜇1 = 0.  
 

In the next section, in order to bring a different 

perspective to boundary studies, the Laplacian 

energy is defined by using the fact that the 

Laplacian matrix for a power graph is a block 

matrix and the structures of the Laplacian 

eigenvalues, and then the bounds on this concept 

are obtained. 
 

2. Main Results 

 

Let 𝐿 be the Laplacian matrix of 𝑃(𝐶𝑛) and its 

eigenvalues are 𝜇𝑛 ≥ 𝜇𝑛−1 ≥ ⋯ ≥ 𝜇2 ≥ 𝜇1 =
0. Using the concept of the Laplacian energy of a 

simple graph and the Laplacian matrix of a power 

graph being a block matrix, the Laplacian energy 

𝐿𝐸 of the power graph 𝑃(𝐶𝑛) is defined as 

 

𝐿𝐸 = ∑ |𝛾𝑖|
𝑛
𝑖=1 ,  

 

where 

 

𝛾𝑖 = 𝜇𝑖 −
𝑠

𝑛
,  

 

𝑠  =  𝑡(2𝑛 − 𝑡 − 1) − 2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛 .  

 

Lemma 1. Let 𝐿𝐸 be the Laplacian energy of the 

power graph 𝑃(𝐶𝑛) and 𝑛 ≥ 3. Then 

 
∑ 𝜇𝑖
𝑛
𝑖=1 = 𝑡(2𝑛 − 𝑡 − 1)  − 2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛   

 

               = 𝑠,  
 

∑ 𝜇𝑖
2𝑛

𝑖=1 = 𝑠 + 𝑡(𝑛 − 1)2 + ∑ 𝑑2(𝑖)𝑛
𝑖=𝑡+1 ,   

 

where 𝑑(𝑖), is the degree of a vertex 𝑖. 
 

Proof. Since the trace of a matrix is the sum of 

its eigenvalues, we have 

 
∑ 𝜇𝑖
𝑛
𝑖=1 = 𝑡𝑟(𝐿)  

 

= 𝑡(𝑛 − 1) + ∑ 𝑑(𝑖)𝑛
𝑖=𝑡+1   

 

= 𝑡(𝑛 − 1) + ∑ (−∑ 𝑙𝑖𝑗
𝑛
𝑗=1,𝑖≠𝑗 )𝑛

𝑖=𝑡+1   

 

=  𝑡(𝑛 − 1) − ∑ (−𝑡 + ∑ 𝑙𝑖𝑗
𝑛
𝑗=𝑡+1,𝑖≠𝑗 )𝑛

𝑖=𝑡+1   

 

=  𝑡(2𝑛 − 𝑡 − 1) − 2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛 . 

 
We now consider the matrix 𝐿2. 
 

∑ 𝜇𝑖
2𝑛

𝑖=1 = 𝑡𝑟(𝐿2)  
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= 𝑡((𝑛 − 1)2 + 𝑡 − 1) + 2𝑡(𝑛 − 𝑡)  
 

               + 𝑡𝑟 [𝐿(𝑃(𝑉2))
2
].  

 

The 𝑖𝑖-th entry of 𝐿2(𝑃(𝑉₂)) is 

 

∑ 𝑑2(𝑖)𝑛
𝑖=𝑡+1 − 2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛 .   

 

Thus 

 
∑ 𝜇𝑖

2𝑛
𝑖=1 = 𝑡(2𝑛 − 𝑡 − 1) −  

 

2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛 + 𝑡(𝑛 − 1)2 + ∑ 𝑑2(𝑖)𝑛
𝑖=𝑡+1   

 

= 𝑠 + 𝑡(𝑛 − 1)2 + ∑ 𝑑2(𝑖)𝑛
𝑖=𝑡+1   

 

This completes the proof. 

 

Lemma 2. Let 𝐿𝐸 be the Laplacian energy of the 

power graph 𝑃(𝐶𝑛) and 𝑛 ≥ 3 . Then 

 
∑ 𝛾𝑖
𝑛
𝑖=1 = 0  

 

and 

 

∑ 𝛾𝑖
2𝑛

𝑖=1 = 𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 .  

 

Proof. Using the definition of 𝛾𝑖 and Lemma 1, 

we have 

 
∑ 𝛾𝑖
𝑛
𝑖=1 = −𝑠 + ∑ 𝜇𝑖

𝑛
𝑖=1 = 0.  

 

For the proof of the second equality, we have 

 

∑ 𝛾𝑖
2𝑛

𝑖=1 = ∑ 𝜇𝑖
2𝑛

𝑖=1   

−2
𝑡(2𝑛−𝑡−1)−2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛

𝑛
∑ 𝜇𝑖
𝑛
𝑖=1   

 

+
(𝑡(2𝑛−𝑡−1)−2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛 )

2

𝑛
.  

 

From Lemma 1, we have 

 

= 𝑡(2𝑛 − 𝑡 − 1) − 2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛   

 

+𝑡(𝑛 − 1)2 + ∑ 𝑑2(𝑖)𝑛
𝑖=𝑡+1   

 

−
(𝑡(2𝑛−𝑡−1)−2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛 )

2

𝑛
  

 

= ∑ 𝑑2(𝑖)𝑛
𝑖=𝑡+1 + 𝑛2𝑡 − 𝑛𝑡  

 

+∑ 𝑑2(𝑖)𝑛
𝑖=𝑡+1  −

(𝑡(2𝑛−𝑡−1)−2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛 )
2

𝑛
  

 

 = 𝑡(2𝑛 − 𝑡 − 1) − 2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛   

 

+∑ (𝑑(𝑖) −
𝑡(2𝑛−𝑡−1)−2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛

𝑛
)
2

𝑛
𝑖=1   

 

= 𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1   

 

so the proof is complete. 

 

Lemma 3. Let 𝐿𝐸 be the Laplacian energy of the 

power graph 𝑃(𝐶𝑛) and 𝑛 = 𝑞𝑘 ≥ 3. Then 

 

∑ 𝛾𝑖
2𝑛

𝑖=1 = 𝑛(𝑛 − 1), 
 

where 𝑞 is a prime number and 𝑘 ∈ ℤ+. 

 

Proof. Since 𝑛 is the positive integer power of a 

prime number then 𝑃(𝐶𝑛) is a complete graph. 

Using Lemma 1, we have 

 
∑ 𝜇𝑖
𝑛
𝑖=1 = 𝑡𝑟(𝐿) = 𝑛(𝑛 − 1),                             (1) 

   

∑ 𝜇𝑖
2𝑛

𝑖=1 = 𝑡𝑟(𝐿2) = 𝑛2(𝑛 − 1)                         (2) 

 

and 

 

𝛾𝑖 = 𝜇𝑖 −
𝑡(2𝑛−𝑡−1)−2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛

𝑛
,  

 

     = 𝜇𝑖 −
𝑛(2𝑛−𝑛−1)

𝑛
  

 

= 𝜇𝑖 − (𝑛 − 1).                               (3) 

 

From (1), (2), (3), we have 

 

∑ 𝛾𝑖
2𝑛

𝑖=1 = ∑ (𝜇𝑖 − (𝑛 − 1))
2𝑛

𝑖=1   

 

= ∑ 𝜇𝑖
2𝑛

𝑖=1 + 𝑛(𝑛 − 1)2  

 

−2(𝑛 − 1)∑ 𝜇𝑖(𝑃(𝐶𝑛))
𝑛
𝑖=1   

 

=  𝑛(𝑛 − 1).  
 

This completes the proof. 
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Theorem 4. Let 𝐿𝐸 be the Laplacian energy of 

the power graph 𝑃(𝐶𝑛) and 𝑛 ≥ 3. Then 

 

√𝑛𝑠 + 𝑛∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 ≥ 𝐿𝐸  

 

and 

 

𝐿𝐸 ≥ √𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 .  

 

Proof. Using the Cauchy-Schwarz inequality and 

Lemma 2, we have 

 

𝐿𝐸2 = (∑ |𝛾𝑖|
𝑛
𝑖=1 )2  

 

         ≤ 𝑛∑ 𝛾𝑖
2𝑛

𝑖=1    
 

        =𝑛𝑠 + 𝑛∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1    

 

and thus 

 

𝐿𝐸 ≤ √𝑛𝑠 + 𝑛∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 . 

 

For the second inequality of the theorem, we 

obtain 

 

𝐿𝐸2 = (∑ |𝛾𝑖|
𝑛
𝑖=1 )2  

 

         ≥ 𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

.𝑛
𝑖=1   

 

Therefore, 

 

𝐿𝐸 ≥ √𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 . 

 

Corollary 5. Let 𝐿𝐸 be the Laplacian energy of 

the power graph 𝑃(𝐶𝑛) and 𝑛 = 𝑞𝑘 ≥ 3. Then 

 

√𝑛2 − 𝑛 ≤ 𝐿𝐸 ≤ √𝑛3 − 𝑛2,  
 

where 𝑞 is a prime number and 𝑘 ∈ ℤ+. 
 

Proof.Since 𝑛 is the positive integer power of a 

prime numberthen 𝑃(𝐶𝑛) is a complete graph. 

Using definition of Laplacian energy and Lemma 

3, we have 

 

𝐿𝐸2 ≥ ∑ 𝛾𝑖
2𝑛

𝑖=1 = 𝑛(𝑛 − 1)  

and then 

 

𝐿𝐸 ≥ √𝑛2 − 𝑛.  
 

For the proof of the second inequality, we have 

 

𝐿𝐸2 ≤ 𝑛∑ 𝛾𝑖
2𝑛

𝑖=1 = 𝑛2(𝑛 − 1),  
 

i.e., 

 

𝐿𝐸 ≤ √𝑛3 − 𝑛2.  
 

so the proof is completed. 

 

Theorem 6. Let 𝐿𝐸 be the Laplacian energy of 

the power graph 𝑃(𝐶𝑛) and 𝑛 ≥ 3. Then 

 

𝐿𝐸 ≤
𝑠

𝑛
  

 

+√(𝑛 − 1) [𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 −

𝑠2

𝑛2
].  

 

Proof. Since the definition of the Laplacian 

energy, Cauchy-Schwarz inequality and Lemma 

2, we have 

 

(𝐿𝐸 −
𝑠

𝑛
)
2

= (∑ |𝛾𝑖|
𝑛
𝑖=2 )2  

 

≤ (𝑛 − 1) [∑ 𝛾𝑖
2𝑛

𝑖=1 −
𝑠2

𝑛2
]  

 

= (𝑛 − 1) [𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 −

𝑠2

𝑛2
],  

 

and thus 

 

𝐿𝐸 ≤
𝑠

𝑛
  

 

+√(𝑛 − 1) [𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 −

𝑠2

𝑛2
],  

 

The proof is complete. 

 

Corollary 7. Let 𝐿𝐸 be the Laplacian energy of 

the power graph 𝑃(𝐶𝑛) and 𝑛 = 𝑞𝑘 ≥ 3. Then 

 

𝐿𝐸 = 2(𝑛 − 1),  
 

where 𝑞 is a prime number and 𝑘 ∈ ℤ+. 
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Proof. Since 𝑛 is the positive integer power of a 

prime number then 𝑃(𝐶𝑛) is a complete graph. 

Thus 

 

𝑠 = 𝑡(2𝑛 − 𝑡 − 1) − 2∑ 𝑙𝑖𝑗𝑡+1≤𝑖<𝑗≤𝑛   

 

= 𝑛(2𝑛 − 𝑛 − 1)  
 

= 𝑛(𝑛 − 1).  
 

From Lemma 3, the definition of the Laplacian 

energy, Cauchy-Schwarz inequality and the 

spectrum of a complete graph, we obtain 

 

(𝐿𝐸 −
𝑠

𝑛
)
2

= (𝑛 − 1) [∑ 𝛾𝑖
2𝑛

𝑖=1 −
𝑠2

𝑛2
]  

 

= (𝐿𝐸 − (𝑛 − 1))
2
= (𝑛 − 1)2  

 

and then 

 

𝐿𝐸 =  2(𝑛 − 1)  
 

so the proof is completed. 

 

Theorem 8. Let 𝐿𝐸 be the Laplacian energy of 

the power graph 𝑃(𝐶𝑛) and 𝑛 ≥ 3.Then 

 
𝐿𝐸 ≥

√𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 + 𝑛(𝑛 − 1)𝑑𝑒𝑡 (𝐿 −

𝑠

𝑛
Ι)

2

𝑛
.  

 

 

 

Proof. By Lemma 2, we have 

 

𝐿𝐸2 = ∑ 𝛾𝑖
2𝑛

𝑖=1 + 2∑ |𝛾𝑖||𝛾𝑗|1≤𝑖,𝑗≤𝑛   

 

= 𝑠 + ∑ (𝑑(𝑖) −
𝑠

𝑛
)
2

𝑛
𝑖=1 + ∑ |𝛾𝑖||𝛾𝑗|𝑖≠𝑗 .           (4) 

 

Because the arithmetic mean of nonnegative 

numbers is greater than the geometric mean. So 

we have 

 

1

𝑛(𝑛−1)
∑ |𝛾𝑖||𝛾𝑗|𝑖≠𝑗 ≥(∏ |𝛾𝑖||𝛾𝑗|𝑖≠𝑗 )

1

𝑛(𝑛−1)  

 

= (∏ |𝛾𝑖|
2(𝑛−1)𝑛

𝑖=1 )
1

𝑛(𝑛−1)  

 

= 𝑑𝑒𝑡 (𝐿 −
𝑠

𝑛
Ι)

2

𝑛
,                                 (5) 

 

where I is the identity matrix. By (4) and (5), we 

obtain 

 

𝐿𝐸 ≥ √
𝑠 + ∑ (𝑑(𝑖) −

𝑠

𝑛
)
2

𝑛
𝑖=1

+𝑛(𝑛 − 1)𝑑𝑒𝑡 (𝐿 −
𝑠

𝑛
Ι)

2

𝑛

.  

 

Hence the proof is completed. 

 

Corollary 9. Let 𝐿𝐸 be the Laplacian energy of 

the power graph 𝑃(𝐶𝑛) and 𝑛 = 𝑞𝑘 ≥ 3. Then 

 

𝐿𝐸 ≥ √𝑛(𝑛 − 1) [1 + (𝑛 − 1)
2

𝑛],  

 

where 𝑞 is a prime number and 𝑘 ∈ ℤ+. 
 

Proof. Since 𝑛 is the positive integer power of a 

prime number then 𝑃(𝐶𝑛) is a complete graph. 

Using Theorem 8 and Lemma 3, we have 

 

𝐿𝐸2 ≥ ∑ 𝛾𝑖
2𝑛

𝑖=1 +  𝑛(𝑛 − 1)𝑑𝑒𝑡 (𝐿 −
𝑠

𝑛
𝐼)

2

𝑛
  

 

= 𝑛(𝑛 − 1) + 𝑛(𝑛 − 1)𝑑𝑒𝑡 (𝐿 −
𝑠

𝑛
𝐼)

2

𝑛
  

 

= 𝑛(𝑛 − 1) [1 + 𝑑𝑒𝑡 (𝐿 −
𝑠

𝑛
𝐼)

2

𝑛
].  

 

Since 𝒫(𝐶𝑛) is a complete graph, 

 

𝑠 = 𝑛(𝑛 − 1)  
 

and then 

 

𝑑𝑒𝑡 (𝐿 −
𝑠

𝑛
𝐼) = 𝑑𝑒𝑡(𝐿 − (𝑛 − 1)𝐼)  

 

= 𝑑𝑒𝑡 (−𝐴(𝒫(𝐶𝑛)))  

 

= (−1)𝑛𝑑𝑒𝑡 (𝐴(𝒫(𝐶𝑛))) = 1 − 𝑛.  

 

Thus, 
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𝐿𝐸2 ≥ 𝑛(𝑛 − 1) [1 + (1 − 𝑛)
2

𝑛]  

 

and then 

 

𝐿𝐸 ≥ √𝑛(𝑛 − 1) [1 + (𝑛 − 1)
2

𝑛].  

 

The proof is complete. 

 

Theorem 10. Let 𝐿𝐸 be the Laplacian energy of 

the power graph 𝑃(𝐶𝑛), 𝑛 ≥ 3 and |𝛾1| ≥ |𝛾2| ≥
. . . ≥ |𝛾𝑛| ≥ 0. Then 

 

𝐿𝐸 ≥
𝑠+∑ (𝑑(𝑖)−

𝑠

𝑛
)
2

𝑛
𝑖=1 +𝑛|𝛾1||𝛾𝑛|

|𝛾1|+|𝛾𝑛|
.  

 

Proof. We note that, since 𝐶𝑛 is a cyclic group 

with 𝑛 ≥ 3, 𝒫(𝐶𝑛) has at least two edges. Thus, 

𝐿 has at least one non-zero eigenvalue. Now for 

every 𝑖 = 1,2, . . . , 𝑛, |𝛾1| ≥ |𝛾𝑖| ≥ |𝛾𝑛|. Thus 

 
(|𝛾1| − |𝛾𝑖|)(|𝛾𝑖| − |𝛾𝑛|) ≥ 0.                           (6) 

 

On the other hand 

 
(|𝛾1| − |𝛾𝑖|)(|𝛾𝑖| − |𝛾𝑛|) = |𝛾𝑖|(|𝛾1| + |𝛾𝑛|) 

 

−(𝛾𝑖
2 + |𝛾1||𝛾𝑛|).                                               (7) 

 

From (6) and (7), we obtain 

 

|𝛾𝑖|(|𝛾1| + |𝛾𝑛|) ≥ 𝛾𝑖
2 + |𝛾1||𝛾𝑛|.                     (8) 

 

By summing the sides of the (8) for every 1 ≤
𝑖 ≤ 𝑛, we have 

(|𝛾1| + ⋯+ |𝛾𝑛|)(|𝛾1| + |𝛾𝑛|) ≥  

 

(𝛾1
2+. . . +𝛾𝑛

2) + 𝑛|𝛾1||𝛾𝑛|  
 

and thus 

 

𝐿𝐸 ≥
∑ 𝛾𝑖

2+𝑛|𝛾1||𝛾𝑛|
𝑛
𝑖=1

|𝛾1|+|𝛾𝑛|
.  

 

From Lemma 2, we obtain 

 

𝐿𝐸 ≥
𝑠+∑ (𝑑(𝑖)−

𝑠

𝑛
)
2
+𝑛

𝑖=1 𝑛|𝛾1||𝛾𝑛|

|𝛾1|+|𝛾𝑛|
.  

 

Hence the proof is completed. 

 

Corollary 11. Let 𝐿𝐸 be the Laplacian energy of 

the power graph 𝑃(𝐶𝑛) and 𝑛 = 𝑞𝑘 ≥ 3. Assume 

that |𝛾1| ≥ |𝛾𝑖| ≥ |𝛾𝑛|. Then 

 

𝐿𝐸 = 2(𝑛 − 1),  
 

where 𝑞 is a prime number and 𝑘 ∈ ℤ+. 
 

Proof. Since 𝑛 is the positive integer power of a 

prime number then 𝑃(𝐶𝑛) is a complete graph 

and its Laplacian spectrum is {0, 𝑛, 𝑛, . . . , 𝑛⏟      
𝑛−1

}. 

Also 

 

𝑠 = 𝑛(𝑛 − 1)  
 

and for every 𝑖 = 2,3, . . . , 𝑛, 𝛾𝑖 = 𝜇𝑖 −
𝑠

𝑛
, we 

obtain 

 

𝛾1 = 𝑛 − 1,𝛾2 =. . . = 𝛾𝑛 = 1. 

 

Thus, using by Teorem 10 and Lemma 3, we 

have 

 

𝐿𝐸 =
∑ 𝛾𝑖

2+𝑛|𝛾1||𝛾𝑛|
𝑛
𝑖=1

|𝛾1|+|𝛾𝑛|
  

 

=
𝑛(𝑛−1)+𝑛(𝑛−1)

𝑛−1+1
  

 

= 2(𝑛 − 1).  
 

The proof is complete. 

 

3. Conclusion 

 

In this study, Laplacian matrix concept is defined 

for power graphs of finite cyclic groups, inspired 

by the concepts of Laplacian matrix defined on 

simple connected graphs and adjecency matrix 

defined on power graphs. Then, using Laplacian 

eigenvalues, the concept of Laplacian energy for 

the power graph of a cyclic group is given and 

boundary studies are done on it. Although some 

bounds give results very close to the Laplacian 

energy, it is not always possible to make 

comparison between the bounds as the boundary 

results will change as the graph structure 

changes. 
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