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Abstract—To enhance controller performance, the optimization of control parameters has emerged as a critical 

research area. Among the array of optimization algorithms, the modified elite opposition-based artificial 

hummingbird algorithm (m-AHA) stands out for its ability to emulate behavioral strategies of hummingbirds and 

elite opposition-based technique. This paper, therefore, proposes m-AHA optimizer as a novel approach to 

optimize control parameters in a three-tanks liquid level system. By fine-tuning the parameters of proportional-

integral-derivative (PID) controller, superior performance is achieved. Comparative evaluations with competitive 

algorithms, including the arithmetic optimization algorithm with Harris hawks optimization and covariance matrix 

adaptation evolution strategy, assess the m-AHA optimizer-based approach for three-tank liquid level system 

control. The ITAE (integral of time multiplied absolute error) performance index analyzes time domain and 

frequency metrics, revealing the outstanding performance of the m-AHA optimizer-based approach. 

Keywords: Artificial hummingbird algorithm, Liquid level system, Controller design, Optimization.  

 

1. Introduction  

The effective control of dynamic systems plays a crucial role in achieving desired performance and stability. 

Consequently, the optimization of control parameters has emerged as a pivotal research area, aiming to enhance 

controller performance across diverse systems. The choice of an appropriate optimization algorithm is essential to 

ensure optimal tuning of controller parameters for improved system performance. Among the metaheuristic 

optimization algorithms, the artificial hummingbird algorithm (AHA) has gained popularity as a new technique 

(Ekinci, Izci, & Kayri, 2023; Kıymaç & Kaya, 2023; Yildiz et al., 2022). The AHA simulates a population of 

hummingbirds foraging for food in an environment (Zhao et al., 2022). 

In this paper, we employ a modified AHA (m-AHA) optimizer, reported by (Abualigah et al., 2023), as a novel 

approach for controlling a three-tank liquid level system. The m-AHA optimizer is an improved version of the 

original AHA (Zhao et al., 2022) using a modified version of the elite opposition based learning (EOBL) technique 

(Ekinci, Izci, Eker, et al., 2023). Our focus lies in using the m-AHA optimizer, leveraging its inherent 

characteristics to fine-tune proportional-integral-derivative (PID) controller (Izci et al., 2023) for the stated 

application. Liquid level control is crucial in various industrial processes, such as chemical plants and water 

treatment systems (Amuthambigaiyin Sundari & Maruthupandi, 2022; Bhookya et al., 2022; Issa, 2022; Moharam 

et al., 2016; Stefanoiu & Culita, 2021). Extending the m-AHA optimizer-based approach to the control of a three-

tank liquid level system, we propose it as an efficient alternative to previously reported methods. We evaluate the 

effectiveness of our approach by comparing it against other competitive algorithms such as arithmetic optimization 

algorithm with Harris hawks optimization and covariance matrix adaptation evolution strategy (Issa, 2023). These 

methods are used in this study as good performing competitive algorithms reported for liquid level system. The 

ITAE (integral of time multiplied absolute error) performance index serves as the cost function to assess time and 

frequency domains performance, and the results highlight the m-AHA optimizer-based approach's superiority in 

controlling three-tank liquid level systems. 

In conclusion, this paper presents an impressive approach for optimizing control parameters in three-tank liquid 

level system using the m-AHA optimizer. Our proposed methodology showcases its efficacy in achieving superior 

control performance. Extensive comparisons with competitive algorithms provide compelling evidence of the m-
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AHA optimizer-based approach's superiority, offering a reliable and efficient optimization methodology in the 

field of control systems. 

2. Mathematical Model of Three Tanks Liquid Level System 

The liquid level control system comprises three interconnected tanks, namely Tank 1, Tank 2, and Tank 3. Its 

objective is to regulate the liquid levels in each tank through a control system. In order to create a mathematical 

model for this system, we make the following assumptions and simplifications: The tanks have open tops, allowing 

the liquid surface to be exposed to the atmosphere, the liquid is incompressible and has a constant density, liquid 

flow between the tanks occurs in one direction, moving from higher-level tanks to lower-level tanks, the system 

does not have any leaks and the flow rate between the tanks is directly proportional to the difference in liquid level 

between the two tanks. Considering these assumptions, we can represent the dynamics of the liquid levels in each 

tank using a set of coupled differential equations. Let 𝐻1, 𝐻2, and 𝐻3 represent the liquid levels in Tank 1, Tank 

2, and Tank 3, respectively. The system's dynamics can be described by the following differential equations: 

𝑑𝐻1/𝑑𝑡 =  𝑞𝑖𝑛 −  𝑞12 −  𝑞13            (1) 

𝑑𝐻2/𝑑𝑡 =  𝑞12 −  𝑞23             (2) 

𝑑𝐻3/𝑑𝑡 =  𝑞13 +  𝑞23 –  𝑞𝑜𝑢𝑡            (3) 

where 𝑞𝑖𝑛 is the flow rate into Tank 1, 𝑞𝑜𝑢𝑡 is the flow rate out of Tank 3, and 𝑞12, 𝑞13, and 𝑞23 are the flow 

rates between the tanks. The flow rates are proportional to the difference in liquid levels between the tanks, so the 

followings can be written: 

𝑞12 =  𝑘12(𝐻1 −  𝐻2)             (4) 

𝑞13 =  𝑘13(𝐻1 −  𝐻3)             (5) 

𝑞23 =  𝑘23(𝐻2 −  𝐻3)             (6) 

where 𝑘12, 𝑘13, and 𝑘23 are the proportionality constants that depend on the geometry of the system and the 

properties of the liquid. With these equations, the behavior of the system for different flow rates and control 

strategies can be simulated. Considering the above explanation, the transfer function control theory techniques can 

also be used to design a control system that regulates the liquid levels in each tank by adjusting the flow rates. The 

design of such a control system will depend on the specific requirements and constraints of the application. Fig. 1 

visualizes a simple structure of a tank that is used in a three-tank system. 

 
Fig. 1. Simple structure of a tank 

In the simplified structure given by Fig. 1, 𝑞1 and 𝑞2 represent the liquid flow rates towards in and out of the 

tank, respectively. ℎ represents the height and 𝐴 is the cross-sectional area of the related tank. The following 

transfer function is used in this study for a three-tanks liquid level system (Issa, 2023).  

𝐺𝑝𝑙𝑎𝑛𝑡(𝑠) =
1

(4𝑠+0.2)3 =
1

64𝑠3+9.6𝑠2+0.48𝑠+0.008
          (7) 

3. m-AHA Optimizer 

The design of efficient and robust control for a three-tank system is a critical task. A significant challenge lies 

in creating controllers that can ensure stable and accurate control of this system. One promising approach to tackle 

this challenge involves the utilization of advanced optimization techniques to design controllers capable of 

achieving optimal control performance. One such optimization technique is the m-AHA optimizer reported by 

Abualigah et al., (Abualigah et al., 2023). The m-AHA is an improved version of the original AHA optimizer 

reported by Zhao et al., (Zhao et al., 2022) which incorporates a novel version of the EOBL strategy to enhance 

the performance of the original AHA optimizer. 
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Fig. 2. Flowchart of recommended m-AHA optimizer 

Standard EOBL is defined as 𝑋𝑜 = 〈𝑥1
𝑜, 𝑥2

𝑜 … , 𝑥𝑘
𝑜〉 where 𝑋 = 〈𝑥1, 𝑥2 … , 𝑥𝑘〉 is an elite candidate solution with 

𝑘 decision variables. In the m-AHA optimizer, the EOBL is redefined as 𝑥𝑖
𝑜 = 𝛿(𝑎 ⋅ 𝑑𝑎𝑖 + 𝑏 ⋅ 𝑑𝑏𝑖) − 𝑐 ⋅ 𝑥𝑖 where 

𝛿 is a parameter within (0, 1), and 𝑎, 𝑏, and 𝑐 are random variables within [0, 1]. The solution in the basic EOBL 

is kept within boundaries (lower, 𝐿𝑏𝑖, and upper, 𝑈𝑏𝑖) using the definition of 𝑥𝑖
𝑜 = 𝑟𝑎𝑛𝑑(𝐿𝑏𝑖 , 𝑈𝑏𝑖). However, in 

this study, if the solution exceeds the upper level, it is set to the upper boundary; otherwise, it is set to the lower 

boundary. The m-AHA optimizer starts with the initialization of its parameters. It then applies three foraging 

behaviors of the basic AHA while evaluating the current and elite candidate solutions and selecting the best 𝑁 

solutions. This process continues for a total of iterations (𝑇). 

Fig. 2 shows the flowchart of the m-AHA optimizer. Basically, the m-AHA optimizer works by simulating a 

population of hummingbirds foraging for food in an environment. These hummingbirds update their positions 

based on their experiences and the experiences of the best hummingbirds in the group. The algorithm also 

incorporates a modified EOBL strategy to further improve its performance. To enhance the control performance 

of three tank system, the m-AHA optimizer has been adapted and combined with the PID controller. Using m-

AHA optimizer has shown promising results in enhancing the control performance of three tanks system through 

effective tuning of PID controller parameters. 

4. PID controlled liquid level system and proposed design procedure  

This paper adopts a PID controller for the control of a three-tanks system. A PID controller has the following 

form where the gains known as proportional, integral, and derivative are denoted by 𝐾𝑃, 𝐾𝐼 , and 𝐾𝐷, respectively 

(Ekinci et al., 2022; Izci & Ekinci, 2021). 

𝑃𝐼𝐷(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷𝑠             (8) 
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The block diagram illustrated in Fig. 3 shows how a PID controller achieves the task for adopted plants in a 

feedback control system. 

 
Fig. 3. Block diagram of m-AHA optimizer-based PID parameter estimation for liquid level system 

Initially, the problem is represented as �⃗� = [𝑥1, 𝑥2, 𝑥3] = [𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷] and then the following integral of time 

multiplied absolute error (𝐼𝑇𝐴𝐸) cost function (Ekinci et al., 2021; Snášel et al., 2023) is adopted for appropriate 

minimization via m-AHA optimizer. 

𝐼𝑇𝐴𝐸(𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷) = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
1000

0
           (9) 

In here, 𝑒(𝑡) denotes the error signal and the minimization problem is subjected to the constraints of 10−3 ≤
𝐾𝑃 ≤ 20, 10−3 ≤ 𝐾𝐼 ≤ 20 and 10−3 ≤ 𝐾𝐷 ≤ 20. 

5. Simulation Results and Discussion 

5.1. Statistical Performance of m-AHA Optimizer  

The m-AHA optimizer is initially assessed for its performance of minimizing the ITAE cost function for the 

liquid level system. For the statistical evaluation the migration coefficient of the m-AHA optimizer is set to 2 × 𝑛 

with a total iteration 𝑇 = 50 and population size 𝑛 = 30. Table 1 presents the statistical metrics obtained from the 

minimization of the ITAE cost function. The related statistical metrics are obtained after 25 individual runs. As 

seen from the data in the table, the m-AHA optimizer has a consistent minimization ability within a narrow band 

indicating its good performance characteristics. 

Table 1. Statistical metrics of ITAE minimized by m-AHA optimizer  

Minimum Maximum Median Average Standard Deviation 

324.0611 340.6854 329.8294 330.2053 4.1424 

5.2. Compared Metaheuristic Algorithms 

For comparisons with the m-AHA optimizer, arithmetic optimization algorithm with Harris hawks optimization 

(AOA-HHO) and covariance matrix adaptation evolution strategy (CMA-ES) are used in this study as good 

performing competitive algorithms reported for liquid level system (Issa, 2023). The best controller parameters 

obtained via m-AHA optimizer are: 𝐾𝑃 = 0.05149270, 𝐾𝐼 = 0.00100636 and 𝐾𝐷 = 1.39664147. The transfer 

function obtained via those parameters is as follows.  



41 

 

 

 

 

𝑇𝐹𝑚−𝐴𝐻𝐴(𝑠) =
1.397𝑠2+0.05149𝑠+0.001006

64𝑠4+9.6𝑠3+1.877𝑠2+0.05949𝑠+0.001006
       (10) 

The best controller parameters obtained via AOA-HHO algorithm are: 𝐾𝑃 = 0.040, 𝐾𝐼 = 0.0005 and 𝐾𝐷 =
0.4269 (Issa, 2023). The transfer function obtained via those parameters is as follows. 

𝑇𝐹𝐴𝑂𝐴−𝐻𝐻𝑂(𝑠) =
0.4269𝑠2+0.04𝑠+0.0005

64𝑠4+9.6𝑠3+0.9069𝑠2+0.048𝑠+0.0005
       (11) 

Similarly, the best controller parameters obtained via CMA-ES are: 𝐾𝑃 = 0.051 , 𝐾𝐼 = 0.0013  and 𝐾𝐷 =
0.3914 (Issa, 2023). The transfer function obtained via those parameters is as follows. 

𝑇𝐹𝐶𝑀𝐴−𝐸𝑆(𝑠) =
0.3914𝑠2+0.051𝑠+0.0013

64𝑠4+9.6𝑠3+0.8714𝑠2+0.059𝑠+0.0013
        (12) 

These transfer functions can be used to perform the comparative assessments provided in the following 

subsections. 

5.3. Comparative Step Response Analysis  

Fig. 4 displays the comparative step responses of m-AHA, AOA-HHO and CMA-ES approaches for the liquid 

level system. As seen from the respective plots, the m-AHA optimizer is capable of demonstrating a more desirable 

response in terms of overshoot, rise time, settling time and peak time, making it the best approach that can be used 

to reach more desirable time domain-based performance characteristics for a liquid level system. The related 

illustrations are also supported by the numerical values presented in Table 2. 

 
Fig. 4. Step response of different optimizers-based controller designs for water height 

Table 2. Comparisons of step response characteristics 

Optimizer Rise time (s) Settling time (s) Overshoot (%) Peak time (s) 

m-AHA 10.1884 57.7791 16.9774 22.3629 

AOA-HHO (Issa, 2023) 17.7926 160.1051 20.1160 39.2792 

CMA-ES (Issa, 2023) 15.0133 238.6552 49.9912 38.2793 

5.4. Comparative Frequency Response Analysis 

Fig. 5 displays the comparative Bode plots of m-AHA, AOA-HHO and CMA-ES approaches for the liquid 

level system. As seen from the respective plots, the m-AHA optimizer is capable of demonstrating a more desirable 

response in terms of phase margin, bandwidth, making it the best approach that can be used to reach more desirable 

frequency domain-based performance characteristics for a liquid level system. The related illustrations are also 

supported by the numerical values presented in Table 3. 
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Fig. 5. Comparative Bode plot analysis 

Table 3. Comparisons of frequency response characteristics 

Optimizer Gain margin (dB) Phase margin (°) Bandwidth (rad/s) 

m-AHA Inf 45.4407 0.2094 

AOA-HHO (Issa, 2023) Inf 43.1866 0.1183 

CMA-ES (Issa, 2023) Inf 22.6244 0.1232 

6. Conclusion 

This study delves deeper into the potential of the m-AHA optimizer for fine-tuning the parameters of a PID 

controller in a three-tank liquid level system. The m-AHA optimizer is designed by skillfully integrating the 

original form of the AHA with a novel modified EOBL strategy, enhancing its capabilities for this specific 

application. To demonstrate the efficacy of the m-AHA optimizer, we conduct comprehensive comparisons with 

more recent and best-performing approaches that also utilize the PID controller for controlling the three-tank liquid 

level system. By subjecting the system to rigorous evaluations based on statistical, transient, and frequency 

response characteristics, we aim to showcase the superior performance of the m-AHA optimizer in comparison to 

these competitive methods. Through statistical analysis, we assess various metrics to provide a good understanding 

of the optimizer's performance. The transient response analysis involves studying the system's behavior during the 

initial phase of control to evaluate the speed and stability of the m-AHA-optimized PID controller in achieving the 

desired liquid level setpoints. Furthermore, the frequency response analysis examines the controller's ability to 

respond to varying input frequencies, providing valuable insights into its performance under different dynamic 

conditions. By considering these diverse evaluation aspects, we aim to offer a comprehensive assessment of the 

m-AHA optimizer's efficiency in fine-tuning the PID controller for the three-tank liquid level system. The results 

of our evaluations consistently demonstrate the m-AHA optimizer's superior capacity in achieving optimal control 

performance for the liquid level system. Its ability to efficiently tune the PID controller parameters outperforms 

the other considered methods, highlighting its advantage in achieving stable and accurate liquid level control. 
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