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Abstract. The first case of the novel Coronavirus disease (COVID-19), which

is a respiratory disease, was seen in Wuhan city of China, in December 2019.

From there, it spread to many countries and significantly affected human life.
Deep learning, which is a very popular method today, is also widely used in

the field of healthcare. In this study, it was aimed to determine the most
suitable Deep Learning (DL) model for diagnosis of COVID-19. A popular

public data set, which consists of 2482 scans was employed to select the best DL

model. The success of the models was evaluated by using different performance
evaluation metrics such as accuracy, sensitivity, specificity, precision, F1 score,

kappa and AUC. According to the experimental results, it has been observed

that DenseNet models, AdaGrad and NADAM optimizers are effective and
successful. Also, whether there are statistically significant differences in each

performance measure/score of the architectures by the optimizers was observed

with statistical tests.

1. INTRODUCTION

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, which
causes the novel Coronavirus disease (COVID - 19), belongs to the family of coron-
aviruses, which are large enveloped, positive single-stranded RNA viruses that can
infect humans and animals [1]. This disease spread rapidly around the world and
have had a serious impact on the health and life of many people [2]. COVID-19,
which emerged in November 2019 and defined as an epidemic by the World Health
Organization (WHO), is very contagious. The lack of vaccine when it first appeared
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is one of the main reasons why the virus is dangerous. Therefore, it is very impor-
tant to detect the disease quickly and isolate the infected person immediately in
order to prevent the spread of the disease [3]. Reverse Transcription Polymerase
Chain Reaction (RT-PCR) is the gold standard to diagnose COVID-19 [3–6]. It
is performed by detecting the RNA virus that causes disease from sputum or na-
sopharyngeal swab [3]. However, in addition to the limited number of materials,
a certain period of time must pass for the results to get. Chest imaging methods
like Computed Tomography (CT) or X-ray are an effective techniques and could
be used for diagnosis [2, 3, 5, 7–9]. While X-ray shows visual signs associated with
COVID-19 [10], CT images have a high sensitivity for diagnosing COVID-19 [4].

In recent years, Artificial Intelligence (AI) has a major and fast growth in solv-
ing the complex subjects in some fields including engineering, medicine, economy.
Specifically, Deep Learning (DL) a major area of AI have become very popular in
medical applications. Previously, most things were done manually by doctors. With
DL, this time-consuming process has started to improve [11]. This has attracted
great interest in the proposal and development of deep learning-based studies for
the diagnosis of COVID-19 using both CT and X-ray samples such as [12–18].

One of the studies performed on CT images is [15] by Ardakani et al. In their
study, they used ten Convolutional Neural Network (CNN) (AlexNet [19], VGG-16,
VGG-19 [20], SqueezeNet [21], GoogleNet [22], MobileNetV2 [23], Residual Neural
Network (ResNet)-18, ResNet-50, ResNet-101 [24], and Xception [25]) to diagnose
COVID-19. 1020 CT slices were used. The number of COVID-19 patients was
108 (laboratory proven) and the number of patients without COVID-19 was 86.
The non-COVID-19 group included those with other atypical and viral pneumonia
diseases. In all networks, Stochastic Gradient Descent with Momentum (SGDM)
was used for the optimizer, 0.01 for the initial learning rate and 5 for the validation
frequency. 80% of the data set was employed for training and 20% was considered
for validation. The training and validation data set is the same for all networks.
The data set was shuffled at each epoch. When the training process did not change
remarkably, the training process was stopped. It is noted that among the networks,
Xception and ResNet-101 and provided the best performance. Another study is [14].
In this study, authors constructed a multi-view deep learning fusion model, based
on the modification of ResNet-50 architecture. They aimed to differentiate the
COVID-19 patient with using computed tomography images. Chest CT images of
495 patients were obtained from different hospitals located in China. The data
sets were randomly divided into the training set (395 cases), the validation set (50
cases) and the test set (50 cases). For the training set, 294 cases were diagnosed
as COVID-19 and 101 were diagnosed as pneumonia. In validation and test sets,
37 cases were diagnosed as COVID-19 and 13 other was pneumonia. RMSprop
optimizer with a learning rate of 1×10−5 and batch-size of 4 was used to update
the parameters of network during training phase. In the study carried out by
Singh et al. [17], a CNN model was employed to classify whether the patients
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as infected or not. They used the chest CT images. Hyperparameters of CNN,
which were kernel size, kernel type, number of epochs, learning rate, padding,
stride, hidden layer, activation functions, momentum and batch size, were regulated
by using Multi Objective Differential Evolution (MODE) algorithm. Jaiswal et
al. [26] proposed a Dense Convolutional Network (DenseNet)-201 based [27] deep
transfer learning model to classify patients as COVID-19 infected or not based on
chest CT images. They utilized the proposed model to extract feature, followed
by appropriate classifiers. A data set consisting of 2492 CT scans available on
kaggle was used for experiments. Also, they augmented the data for obtaining
higher accuracy. In the study conducted by Wang et al. [28], a weakly-supervised
deep learning framework was developed for both COVID-19 classification and lesion
localization problems. They segmented the lung area using a pre-trained U-Net [29],
then in order to predict the possibility of COVID-19, the segmented 3D lung area
was fed into a 3D deep neural network. 499 and 131 3D CT volumes were used for
training and testing, respectively. In training of the network, they used Adaptive
Moment Estimation (ADAM) [30] optimizer with a constant 1e − 5 learning rate.
Epoch size was taken as 100. Another relevant study using deep learning and CT
images is [31]. Chen et al. built their study on UNet++ [32] and used Resnet-50 as
the base of UNet++. ResNet-50 is pre-trained on the ImageNet dataset. All pre-
training parameters of ResNet-50 were transmitted to UNet++. 46,096 anonymous
images were used for model creation and validation. Ying et al. [33] designed a pre-
trained ResNet-50 model with the addition of Feature Pyramid Network (FPN) to
extract the top-K details from CT images. The data set consists of chest CT scans of
88 patients diagnosed with COVID-19, 86 healthy people and 101 patients infected
with bacterial pneumonia. The model is capable of both determining the most
important part of the images and interpreting the outputs of the neural network
using FPN and attention modules (to learn the importance of every detail). In
the study of Gozes et al. [34], they first extracted the relevant lung area using
segmentation. For this, they trained U-Nnet architecture using 6,150 CT slices of
cases with lung abnormalities. Then, they utilized Resnet-50-2D with fine-tuned
parameters to detect coronavirus-related abnormalities. He et al. [35] aimed to
develop deep learning methods that can give high diagnostic accuracy rate even the
training CT samples are limited. They presented an Self-Trans approach. In order
to reduce the over-fitting risk, contrastive self-supervised learning was combined
with transfer learning for learning robust and unbiased feature representations.
Besides, they published a public data set containing hundreds of COVID-19 positive
CT scans.

This study, on the other hand, claims to obtain the best model by using differ-
ent Deep Learning (DL) architectures with varying optimizers, tested on a public
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CT data set [36]. While DenseNet-121, DenseNet-201, DenseNet-169 [27], Mo-
bileNetV2 [23], VGG16, VGG19 [20], U-Net [29] and ResNet-50 [24] were de-
termined as architectures, different optimizers, involving Stochastic Gradient De-
scent (SGD), Adaptive Gradient Algorithm (AdaGrad) [37], ADAM, RMSProp and
Nesterov-Accelerated Adaptive Moment estimation (NADAM) [38] were integrated
into the models. In addition, statistical tests were used to examine whether there
were statistically significant differences in each performance measure/score of the
architectures by the optimizers.

The structure of the rest of this paper is as follows. In Section 2, the data set,
architectures and optimizers used in the study are presented. In section 3, model
parameters are detailed regarding models. Experimental results, success of the
models and statistical tests are also discussed in this section, whereas, Section 4
concludes the study.

2. Material and Method

In this section, information about the data set and models used in the study is
detailed. Subsections involve Data set and Architecture.

2.1. Data set. In this study, a benchmark public data set (available in Kaggle)
consisting of 2482 CT scans of patients [36] is employed. The data set contains 1252
SARS-CoV-2 infected CT scans and 1230 CT scans non-infected by SARS-CoV-2.
Patients who are not infected by COVID-19 have other pulmonary diseases. The
data was collected from hospitals of Sao Paulo, Brazil. Figure 1 illustrates sample
CT scans from this data set. 2234 of these CT scans were used for training, whereas
the remaining 248 scans were employed for testing.

2.2. Architectures.

2.2.1. DenseNet. DenseNet is one of the leading DL architecture, connecting each
layer to following layers in a feed-forward approach, was proposed in [27]. With this
architecture, it is aimed to deepen deep learning networks, to be more accurate, as
well as to make them more efficient to train by using shorter connections between
layers. There are several important advantages of DenseNets, which are detailed as
follows [27]:

• They reduce the vanishing-gradient problem.
• They strengthen feature propagation.
• They encourage feature reuse.
• They quite decrease the number of parameters.

In addition, they showed that DenseNets scales to hundreds of layers without opti-
mization difficulties.
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Figure 1. Sample CT scans [36].

2.2.2. MobileNetV2. MobileNetV2, introduced by [23], is a neural network archi-
tecture specifically developed for resource constrained environments, such as mo-
bile platforms. MobileNetV2 architecture involves a novel layer, providing low-
dimensional compressed representation for input data. Firstly, this representation
is extended to high dimension and filtered with a “lightweight depth-wise convolu-
tion”. Afterwards, features are projected back to a low-dimensional representation
by using a linear convolution filter. [23]. Although MobileNetV2 uses deep separa-
ble convolution, the point where it differs is that it has a bottleneck residual block
rather than a deep separable convolution block.

2.2.3. VGG. VGG16 is a convolutional neural network model, achieved to win the
first and second place in the localization and classification tracks respectively in
“The ImageNet Large Scale Visual Recognition Challenge 2014”. It was proposed
by [20]. During the training, the input of ConvNet is a fixed size 224 Ö 224 RGB
image. The image passes through a convolutional layer stacks, in which filters
(3×3) with a very small receptive are used. 1×1 convolution filters, which can be
viewed as a linear transformation of the input channels (followed by nonlinearity),
are used in one of the configurations. The padding is 1 pixel for 3×3 convolution
layers and spatial pooling is performed with five max-pooling layers. Five max-
pooling layers follow some convolution layers, but max-pooling (which is carried
out over a 2×2 pixel window, with stride 2) does not follow all convolution layers.
Three Fully-Connected (FC) layers follow a convolutional layers stack. In different
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architectures, this convolutional layers stack may have different depth. The soft-
max, the classifier layer, is the final layer. In all networks, the configuration of fully
connected layers is defined as identical can be seen in [20].

2.2.4. U-Net. U-Net [29] is a convolutional neural network developed for obtaining
better segmentation performance in case of having limited amount of biomedical
image data. It was proposed by Ronnenberger et al. [29]. In their study, they offered
a network and training scheme based on the excessive use of data augmentation
to employ existing annotated samples more effectively. It is an important change
of the architecture they present to have a large number of feature channels in the
upsampling section. These feature channels provide the network to pass context
information to higher layers [29].

2.2.5. ResNet. ResNet architecture is one of the most popular deep neural networks
available in many varieties with different number of layers. It was the winner of
ILSVRC & COCO 2015 competitions on the tasks of ImageNet detection, ImageNet
localization, COCO detection, and COCO segmentation. ResNet was introduced
by [24]. He et al. showed that the accuracy becomes saturated with increasing
network depth, adding more layers to the network results in higher training error.
In addition, they showed that this was not caused by overfitting contrary to pop-
ular belief. Due to the problem of vanishing/exploding gradients, training of deep
networks is difficult. An identity shortcut connection that skips one or more layers
was defined in ResNet. Thus, the number of layers can be increased without the
problem of vanishing gradients.

2.3. Optimizer. Optimizer is used to reduce the loss, which is the difference be-
tween actual value and predicted value. The choice of these algorithm or method is
very important. In this study, five different optimizers, which are SGD, AdaGrad,
RMSProp, ADAM and NADAM, are used.

Stochastic gradient descent is a popular iterative method used to optimize an
objective function. In SGD, which is a variant of Gradient Descent (GD), random
samples are selected from training data in each iteration to update the parameter
during optimization. Equation 1 is used for parameter updating:

θ = θ − η.▽θ J(θ;x, y) (1)

where, θ is a parameter, η is the learning rate, ▽ is the gradient and J is objective
function. SGD performs one update at a time.

AdaGrad [37], which adapts the learning rate to the parameters, is an algorithm
for gradient-based optimization [39]. Each parameter in AdaGrad has its own
learning rate, so it eliminates manual adjustment of the learning rate. It decreases
the learning rate of parameters proportionally to previous updates of parameters.
AdaGrad makes large updates for infrequent parameters, while smaller updates
for frequent parameters. The disadvantage of AdaGrad is that the system stops
learning after a certain point due to the reduction of the learning rate.
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RMSprop1, which was proposed by Geoff Hinton, is an unpublished adaptive
learning rate method. It is one of the algorithms developed due to the need to solve
the decreasing learning rates problem in AdaGrad. RMSprop keeps the moving
average of the squared gradients and divides the gradient by the root of this average.
The update rule is as follows [39]:

E[g2]t = γE[g2]t−1 + (1− γ)g2t

θt+1 = θt −
η√

E[g2]t + ϵ
gt (2)

where, E[g] is the running average. While Hinton recommends setting γ (moving
average parameter) to 0.9, a good default value for η (learning rate) is 0.001.

The ADAM [30], which is an adaptive learning rate optimization algorithm, was
introduced by Kingma and Ba in [30] study. They designed ADAM to combine
the advantages of two popular methods, AdaGrad and RMSProp. Some of the
advantages that ADAM has are as follows [30]:

• ADAM’s step size is approximately limited by the step size hyper parame-
ter.

• A fixted objective is not required.
• It works with sparse gradients.
• A form of step size annealing is naturally.
• The magnitudes of the parameter updates does not change with the rescal-
ing of the gradient.

In the ADAM algorithm, adaptive learning rates are calculated for each param-
eter. It stores an exponentially decreasing average of past square of gradients, as
in Adadelta and RMSprop. It also maintains an exponentially decreasing average
of past gradients. ADAM update rule is given in the following equation [39]:

θt+1 = θt −
η√

υ̂t + ϵ
m̂t (3)

where, m̂t and υ̂t are first moment vector and the second moment vector respec-
tively.

Finally, NADAM [38], which utilize ADAM optimizer with Nesterov Accelerated
Gradient (NAG), is a variation of ADAM. NADAM can be used on noisy gradi-
ents as well as gradients with high curvatures. Equation 4 shows the equation of
NADAM update rule.

θt+1 = θt −
η√

υ̂t + ϵ
(β1m̂t +

(1− β1)gt

1− βt
1

) (4)

3. The Experimental Section and Discussion

In this section, parameter values used in the study are explained and experiments
have been carried out. Success of the models on data set is observed.

1http://www.cs.toronto.edu/ tijmen/csc321/slides/lecture slides lec6.pdf
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3.1. Parameter Settings. In artificial neural networks, activation function gen-
erates the output of a node. Since it has an significant effect on success of neural
network, the choice of activation function is very important for design of a neu-
ral network. In this study, while Rectified Linear Unit (ReLU) [40] is used in the
hidden layer, sigmoid is used in the output layer. The batch-size is a hyperparam-
eter that corresponds to the number of training examples to propagated through
the network. Learning rate, that has an effect on updating weights of model at
each iteration, is one of the important hyperparameters for deep neural networks.
Iteration number, batch-size and learning rate values were set as follows:

• Iteration number: 50, 100
• Batch-size: 128
• Learning rate: Learning rate was determined using ReduceLROnPlateau.
Started with 0.01, the minimum can be 0.00001.

3.2. Experimental Results. Models were trained separately on the training data
set with each optimizer and iteration value. After each training, the models were
tested. Accuracy, sensitivity (recall), specificity, precision, F1 score, kappa and
Area Under the ROC Curve (AUC) were used to evaluate the performance of ar-
chitectures. In equations 5, 6, 7, 8 and 9, the formulas for “accuracy”, “sensitivity”,
“specificity”, “precision” and “F1 score” are given respectively.

Accuracy =
TP + TN

TP + FN + TN + FP
(5)

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

Precision =
TP

TP + FP
(8)

F1 score = 2 ∗ precision ∗ recall
precision+ recall

(9)

For equations 5, 6, 7 and 8, TP corresponds to true positives, TN true negatives,
FN false negatives and FP false positives. Table 1 indicates the performances of
networks. In the table, iteration is abbreviated as iter, accuracy as acc, sensitivity
as sens and specificity as spec, precision as prec and F1 score as F1.
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Table 1. Performances of networks.

Networks Optimizer Iter Acc Sens Spec Prec F1 Kappa AUC

DenseNet-121 ADAM 50 0.94 0.94 0.95 0.94 0.94 0.89 0.94

DenseNet-121 AdaGrad 50 0.93 0.99 0.88 0.85 0.93 0.85 0.92

DenseNet-121 SGD 50 0.92 0.99 0.87 0.84 0.92 0.83 0.91

DenseNet-121 NADAM 50 0.90 0.90 0.90 0.89 0.90 0.79 0.89

DenseNet-121 RMSprop 50 0.92 0.96 0.89 0.87 0.92 0.83 0.91

DenseNet-121 ADAM 100 0.94 0.93 0.96 0.95 0.94 0.88 0.94

DenseNet-121 AdaGrad 100 0.91 0.99 0.85 0.81 0.91 0.81 0.90

DenseNet-121 SGD 100 0.91 0.99 0.85 0.81 0.91 0.81 0.90

DenseNet-121 NADAM 100 0.94 0.98 0.90 0.89 0.94 0.87 0.93

DenseNet-121 RMSprop 100 0.88 0.97 0.83 0.78 0.89 0.76 0.87

DenseNet-201 ADAM 50 0.93 0.96 0.90 0.89 0.93 0.86 0.92

DenseNet-201 AdaGrad 50 0.87 0.99 0.81 0.74 0.89 0.74 0.87

DenseNet-201 SGD 50 0.91 0.99 0.85 0.81 0.91 0.80 0.81

DenseNet-201 NADAM 50 0.94 0.93 0.95 0.94 0.94 0.87 0.93

DenseNet-201 RMSprop 50 0.89 0.97 0.83 0.78 0.90 0.77 0.88

DenseNet-201 ADAM 100 0.93 0.95 0.92 0.91 0.93 0.87 0.93

DenseNet-201 AdaGrad 100 0.91 0.99 0.86 0.83 0.92 0.82 0.91

DenseNet-201 SGD 100 0.93 0.97 0.89 0.87 0.93 0.85 0.92

DenseNet-201 NADAM 100 0.94 0.93 0.95 0.94 0.94 0.87 0.94

DenseNet-201 RMSprop 100 0.94 0.95 0.93 0.93 0.94 0.88 0.94

DenseNet-169 ADAM 50 0.93 0.96 0.91 0.89 0.93 0.86 0.93

DenseNet-169 AdaGrad 50 0.96 0.97 0.94 0.94 0.96 0.91 0.95

DenseNet-169 SGD 50 0.89 0.98 0.83 0.78 0.90 0.78 0.88

DenseNet-169 NADAM 50 0.88 0.82 0.94 0.94 0.88 0.76 0.88

DenseNet-169 RMSprop 50 0.79 0.99 0.71 0.57 0.83 0.58 0.78

DenseNet-169 ADAM 100 0.90 0.88 0.92 0.92 0.90 0.80 0.90

DenseNet-169 AdaGrad 100 0.93 0.98 0.88 0.86 0.93 0.85 0.92

DenseNet-169 SGD 100 0.86 0.99 0.79 0.72 0.88 0.73 0.85

DenseNet-169 NADAM 100 0.91 0.88 0.93 0.93 0.90 0.81 0.90

DenseNet-169 RMSprop 100 0.92 0.93 0.91 0.89 0.92 0.83 0.91
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MobileNetV2 ADAM 50 0.76 0.98 0.69 0.52 0.81 0.52 0.75

MobileNetV2 AdaGrad 50 0.74 0.89 0.69 0.57 0.78 0.47 0.73

MobileNetV2 SGD 50 0.72 0.98 0.65 0.42 0.78 0.42 0.70

MobileNetV2 NADAM 50 0.91 0.95 0.88 0.86 0.91 0.82 0.90

MobileNetV2 RMSprop 50 0.87 0.93 0.82 0.78 0.88 0.73 0.86

MobileNetV2 ADAM 100 0.90 0.96 0.86 0.84 0.91 0.80 0.89

MobileNetV2 AdaGrad 100 0.72 0.71 0.74 0.73 0.72 0.44 0.72

MobileNetV2 SGD 100 0.90 0.97 0.75 0.64 0.84 0.63 0.81

MobileNetV2 NADAM 100 0.88 0.94 0.84 0.81 0.89 0.76 0.88

MobileNetV2 RMSprop 100 0.86 0.94 0.82 0.77 0.87 0.72 0.86

VGG16 ADAM 50 0.91 0.98 0.85 0.82 0.91 0.81 0.90

VGG16 AdaGrad 50 0.81 0.93 0.75 0.67 0.83 0.61 0.80

VGG16 SGD 50 0.86 0.92 0.82 0.78 0.86 0.70 0.85

VGG16 NADAM 50 0.89 0.97 0.85 0.81 0.91 0.79 0.89

VGG16 RMSprop 50 0.92 0.96 0.88 0.86 0.92 0.83 0.91

VGG16 ADAM 100 0.89 0.96 0.84 0.80 0.90 0.78 0.88

VGG16 AdaGrad 100 0.86 0.92 0.82 0.78 0.86 0.70 0.85

VGG16 SGD 100 0.87 0.93 0.84 0.80 0.88 0.74 0.87

VGG16 NADAM 100 0.92 0.96 0.90 0.89 0.93 0.85 0.92

VGG16 RMSprop 100 0.91 0.95 0.89 0.87 0.92 0.83 0.91

VGG19 ADAM 50 0.86 0.94 0.82 0.77 0.87 0.72 0.85

VGG19 AdaGrad 50 0.78 0.90 0.73 0.63 0.81 0.55 0.77

VGG19 SGD 50 0.73 0.80 0.71 0.65 0.76 0.46 0.73

VGG19 NADAM 50 0.89 0.93 0.87 0.84 0.90 0.79 0.89

VGG19 RMSprop 50 0.87 0.93 0.84 0.80 0.88 0.74 0.87

VGG19 ADAM 100 0.89 0.96 0.86 0.83 0.90 0.79 0.89

VGG19 AdaGrad 100 0.81 0.91 0.76 0.69 0.83 0.61 0.80

VGG19 SGD 100 0.73 0.83 0.71 0.63 0.76 0.47 0.73

VGG19 NADAM 100 0.89 0.93 0.87 0.85 0.90 0.79 0.89

VGG19 RMSprop 100 0.88 0.94 0.84 0.81 0.89 0.76 0.88

U-Net ADAM 50 0.80 0.98 0.73 0.61 0.84 0.60 0.79

U-Net AdaGrad 50 0.66 0.98 0.60 0.31 0.75 0.30 0.64

U-Net SGD 50 0.64 0.99 0.59 0.26 0.74 0.26 0.63
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U-Net NADAM 50 0.82 0.97 0.75 0.64 0.84 0.63 0.81

U-Net RMSprop 50 0.83 0.98 0.75 0.65 0.85 0.64 0.82

U-Net ADAM 100 0.78 0.98 0.71 0.56 0.82 0.55 0.77

U-Net AdaGrad 100 0.80 0.98 0.72 0.59 0.83 0.59 0.79

U-Net SGD 100 0.68 0.98 0.62 0.36 0.76 0.35 0.67

U-Net NADAM 100 0.80 0.98 0.73 0.61 0.84 0.60 0.79

U-Net RMSprop 100 0.75 0.98 0.68 0.50 0.80 0.49 0.74

ResNet-50 ADAM 50 0.67 0.98 0.61 0.33 0.75 0.32 0.66

ResNet-50 AdaGrad 50 0.60 0.98 0.57 0.33 0.72 0.18 0.58

ResNet-50 SGD 50 0.50 0.98 0.60 0.33 0.66 0.12 0.52

ResNet-50 NADAM 50 0.61 0.98 0.57 0.20 0.72 0.19 0.59

ResNet-50 RMSprop 50 0.69 0.95 0.64 0.42 0.76 0.38 0.68

ResNet-50 ADAM 100 0.68 0.96 0.63 0.37 0.76 0.35 0.67

ResNet-50 AdaGrad 100 0.61 0.98 0.57 0.33 0.72 0.20 0.60

ResNet-50 SGD 100 0.52 0.99 0.52 0.35 0.68 0.15 0.50

ResNet-50 NADAM 100 0.69 0.95 0.63 0.41 0.76 0.37 0.68

ResNet-50 RMSprop 100 0.64 0.98 0.59 0.26 0.74 0.26 0.62

When the Table 1 is examined, DenseNet-169 have the highest accuracy rate with
96%. For this rate, the optimizer is AdaGrad and the number of iterations is 50.
When the maximum values produced by other architectures are examined, NADAM
was used in 8 experiments, RMSprop in 4 experiments and ADAM optimizer in 3
experiments. 7 of these results were obtained from 50 iterations and 8 of them were
obtained from 100 iterations. ResNet-50 yielded the lowest accuracy value of 50%
with SGD optimizer at 50 iterations. In addition, the highest accuracy rate of 69%
of ResNet-50 is considerably lower than other architectures. DenseNet’s are very
successful with results of 94% and above.

When the AUC values are examined, with a value of 0.95, DenseNet-169 have the
best result in 50 iterations and AdaGrad optimizer. Considering the best values of
other architectures, NADAM was used in 6 results, ADAM and RMSprop optimizer
was used in 3 results. 5 of them belong to 50 iterations and 7 of them to 100
iterations. ResNet-50 gave the worst AUC value of 0.5 at 100 iterations with SGD
optimizer. The AUC value of 0.68 of ResNet-50 is lower than the best results
yielded by other architectures. According to all the AUC values, DenseNets are
more efficient.

When the results obtained with the kappa evaluation method are analyzed, it is
seen that DenseNet-169 is the most successful architecture with AdaGrad optimizer
and 50 iterations. This kappa value is 0.91. ResNet-50 is the lowest rate network
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with 0.12. At this value, SGD was used as optimizer and the number of iterations
was 50.

In precision values, the best result belongs to DenseNet-121 with 0.95. This value
was obtained by using 100 iterations and ADAM opitmizer. The worst result is 0.20
and it was produced by ResNet-50. It is seen that NADAM was used as optimizer
and the number of iterations was 50. When all precision values are examined, it is
seen that NADAM was used as optimizer and the number of iterations was 50 in
most of the best results produced by the models. Again, it is clear that DenseNets
are more successful in these results.

According to the specificity results, DenseNet-121 is the best architecture, while
ResNet-50 is the most unsuccessful network. DenseNet-121 yielded 0.96 in 100
iterations with ADAM optimizer. In the worst result, SGD optimizer was used and
the number of iterations was 100. It is seen that NADAM was used as optimizer
and the number of iterations was 50 in most of the best values that the architectures
had.

The most effective architectures for sensitivity values are DenseNets, U-Net and
ResNet-50 with the value of 0.99. DenseNet-121 gave this value as a result of the
experiments using AdaGrad and SGD optimizer in 50 and 100 iterations, respec-
tively. DenseNet-201 yielded 0.99 sensitivity value with AdaGrad optimizer at 50
and 100 iterations and with SGD optimezer at 50 iterations. In DenseNet-169,
RMSprop was used in 50 iterations and SGD optimizer in 100 iterations. SGD
optimizer was used in ResNet-50 and U-Net networks and the iteration numbers
were 100 and 50 respectively.

Finally, considering the F1 scores, the best result is 0.96, the worst result is 0.66.
In the 0.96 value produced by DenseNet-169 architecture, AdaGrad optimizer was
used and the number of iterations was 50. 0.66 belongs to ResNet-50 network with
SGD optimizer 50 iterations. It is seen that DenseNet models are superior in F1
score values too.

When the evaluation is made considering all the results in the table, it is seen that
DenseNets are the most successful architecture while ResNet-50 is a less effective
network. Although AdaGrad was the optimizer for the majority of the highest
results, the NADAM optimizer in general also produced effective results. The
success of 50 iterations shows that effective results can be obtained with a small
number of iterations. Figure 2 and 3 show Grad-CAM [41] visualization of 4 and 5
images, respectively, classified as COVID-19 using DenseNet169 50 iterations and
AdaGrad optimizer. Figure 4 shows the normalized confusion matrix and ROC
curve of DenseNet169 with 50 iterations and AdaGrad optimizer.

3.3. Statistical Significance in Each Performance Evaluation. In this study,
each architecture was evaluated by the well-known performance measures. These
performance measures were calculated for five optimizers with 50 and 100 itera-
tions. One of the important concerns is whether there were statistically significant
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Table 2. Comparisons of the optimizers by the architecture-performances (iter = 50).

Assumption Comparing the optimizers

Performance

Score (PS)
Normality

Variance-

homogeneity

Hypothesis testing

(p− value)

Pairwise

comparisons

PS1 :

Acc-score

✗

(p− value

< 0.005)

✓

(p− value

= 0.508)

No difference/Similar

effects

(p− value = 0.052)

—

PS2 :

Sens-score

✗

(p− values

< 0.005)

✓

(p− value

= 0.649)

No difference/Similar

effects

(p− value = 0.545)

—

PS3 :

Spec-score

✓

(p− values

> 0.01)

✓

(p− value

= 0.890)

Significant

difference/Dissimilar

effects

(p− value = 0.011)

Significant differences:

�NADAM-AdaGrad

(95%CI = (0.64, 17.86),

p− value = 0.031)

�SGD-NADAM

(95%CI = (−18.48,−1.27),

p− value = 0.018)

PS4 :

Prec-score

✗

(p− value

< 0.005)

✓

(p− value

= 0.873)

Significant

difference/Dissimilar

effects

(p− value = 0.030)

Significant differences:

�ADAM-SGD

(95%CI = (5.0, 22.5),

p− value = 0.022)

�NADAM-SGD

(95%CI = (1.5, 30.0),

p− value = 0.049)

PS5 :

F1-score

✓

(p− values

> 0.01)

✓

(p− value

= 0.636)

Significant

difference/Dissimilar

effects

(p− value = 0.014)

Significant difference:

�SGD-NADAM

(95%CI = (−11.49,−0.26),

p− value = 0.037)

PS6 :

Kappa-score

✗

(p− value

< 0.005)

✓

(p− value

= 0.350)

No difference/Similar

effects

(p− value = 0.052)

—

PS7 :

AUC-score

✗

(p− value

< 0.005)

✓

(p− value

= 0.449)

Significant

difference/Dissimilar

effects

(p− value = 0.015)

Significant differences:

�AdaGrad-ADAM

(95%CI = (−10.0,−2.0),

p− value = 0.030)

�ADAM-SGD

(95%CI = (5.0, 13.5),

p− value = 0.014)

�NADAM-SGD

(95%CI = (2.0, 17.0),

p− value = 0.035)
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Figure 2. Grad-CAM [41] visualization. First row is original images with COVID-19;
second row is Grad-CAM visualizations.

Figure 3. Grad-CAM [41] visualization: First row is original images with COVID-19;
second row is Grad-CAM visualizations.

differences in each performance measure/score of the architectures by the optimiz-
ers. Performance-based data was organized and prepared as in Figure 5. Normality
test was performed by using Shapiro-Wilk test, where α-level equals 0.01. Variance-
homogeneity was investigated using Bartlett test for normally-distributed data and
Levene test for non-normally distributed data. Comparisons of k-paired samples
(k > 2) were analyzed by using two-way variance analysis where normality and
variance-homogeneity assumptions were provided. Turkey test was conducted to
perform pairwise-comparisons. Besides, Friedman test was used when normality
and/or variance-homogeneity assumptions were not provided. Besides of compar-
ing grand and estimated medians, pairwise-comparisons of k-paired samples were
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Figure 4. Normalized confusion matrix and ROC curve: The left image is normalized
confusion matrix; the right one is ROC curve

performed by using Wilcoxon sign-rank tests. Significance level was selected as 0.05
to compare the optimizers. The lists of assumption-results and statistical inferences
were summarized as in Table 2 and Table 3, where iteration number equals 50 and
100 respectively.

Table 3. Comparisons of the optimizers by the architecture-performances (iter = 100).

Assumption Comparison of

k-paired samples

(p− value)

Pairwise-comparisonsPerformance

Score (PS)
Normality

Variance-

homogeneity

PS1 :

Acc-score

✓

(p− values

> 0.01)

✓

(p− value

= 0.655)

Significant

difference/Dissimilar

effects

(p− value = 0.011)

Significant differences:

�SGD-ADAM

(95%CI = (−12.57,−0.18),

p− value = 0.042)

�SGD-NADAM

(95%CI = (−13.32,−0.93),

p− value = 0.018)

PS2 :

Sens-score

✗

(p− values

< 0.005)

✓

(p− value

= 0.565)

No difference/Similar

effects

(p− value = 0.636)

—
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PS3 :

Spec-score

✓

(p− values

> 0.01)

✓

(p− value

= 0.988)

Significant

difference/Dissimilar

effects

(p− value = 0.000)

Significant differences:

�ADAM-AdaGrad

(95%CI = (1.81, 10.69),

p− value = 0.003)

�NADAM-AdaGrad:

(95%CI = (2.43, 11.32),

p− value = 0.001)

�SGD-ADAM:

(95%CI = (−13.57,−4.68),

p− value = 0.000)

�SGD-NADAM:

(95%CI = (−14.19,−5.31),

p− value = 0.000)

�SGD-RMSprob:

(95%CI = (−10.94,−2.06),

p− value = 0.002)

PS4 :

Prec-score

✓

(p− values

> 0.01)

✓

(p− value

= 0.964)

Significant

difference/Dissimilar

effects

(p− value = 0.000)

Significant differences:

�NADAM-AdaGrad:

(95%CI = (1.29, 16.46),

p− value = 0.016)

�SGD-ADAM:

(95%CI = (−20.08,−4.92),

p− value = 0.000)

�SGD-NADAM:

(95%CI = (−21.96,−6.79),

p− value = 0.000)

�SGD-RMSprob:

(95%CI = (−15.46,−0.29),

p− value = 0.039)

PS5 :

F1-score

✓

(p− values

> 0.01)

✓

(p− value

= 0.814)

Significant

difference/Dissimilar

effects

(p− value = 0.005)

Significant difference:

�SGD-ADAM

(95%CI = (−10.14,−0.36),

p− value = 0.031)

�SGD-NADAM

(95%CI = (−10.64,−0.86),

p− value = 0.015)
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PS6 :

Kappa-score

✓

(p− values

> 0.01)

✓

(p− value4

= 0.898)

Significant

difference/Dissimilar

effects

(p− value = 0.001)

Significant difference:

�NADAM-AdaGrad

(95%CI = (0.85, 21.65),

p− value = 0.029)

�SGD-ADAM

(95%CI = (−24.03,−3.22),

p− value = 0.006)

�SGD-NADAM

(95%CI = (−25.28,−4.47),

p− value = 0.002)

PS7 :

AUC-score

✓

(p− values

> 0.01)

✓

(p− value

= 0.745)

Significant

difference/Dissimilar

effects

(p− value = 0.001)

�SGD-ADAM

(95%CI = (−13.30,−2.20),

p− value = 0.003)

�SGD-NADAM

(95%CI = (−14.05,−2.95),

p− value = 0.001)

�SGD-RMSprob

(95%CI = (−11.55,−0.45),

p− value = 0.029)

4. Conclusion

In this study, the success of optimizers in diagnosing disease from COVID-19 CT im-
ages using different optimizers in different architectures was examined. In addition,
the number of iterations was set at two different values, 50 and 100. DenseNet-
169, DenseNet-121, DenseNet-201, MobileNetV2, U-Net, ResNet-50, VGG16 and
VGG19 were used as models. The efficiency of ADAM, AdaGrad, SGD, NADAM
and RMSprop optimizers was observed. Accuracy, sensitivity, specificity, precision,
F1 score, kappa and AUC were used as evaluation metrics. According to the results,
DenseNets were quite successful, while ResNet-50 was the less effective architecture.
While NADAM is the superior optimizer for the majority of architectures’ own best
results, the majority of the top values in evaluation metrics include AdaGrad opti-
mizer. Considering that the number of images in the data set used in the study is
insufficient, it should be noted that the models yield very good results.

The differences in architecture-performances can be effected by the selected op-
timizers. Thus, the optimizer-effects were analyzed for each performance metric of
the architectures. As the results of statistical inferences, there were statistically
significant differences in 4 out of 7 architecture-performance metrics and 6 out
of 7 architecture-performance metrics by the optimizers, when iteration-numbers
were 50 and 100. According to pairwise comparisons, it has been seen that these
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Figure 5. Data-preparation for statistical inference.

differences were mostly occurred by NADAM-optimizer. Compared to the perfor-
mances of AdaGrad, NADAM has the best specification-performances for both 50
(p− value = 0.005) and 100 (p− value = 0.000) iterations. Besides, NADAM has
better precision- (p− value = 0.000) and kappa- (p− value = 0.014) performances
than AdaGrad, when iteration-number was 100.
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98 S. OZSARI, F.Z. ORTAK, M.S. GÜZEL, M.B. BASKIR, G.E. BOSTANCI

[19] Krizhevsky, A., Sutskever, I., Hinton, G. E., Imagenet classification with deep

convolutional neural networks, Adv Neural Inf Process Syst, 25 (2012), 1097-1105,

https://doi.org/10.1145/3065386.
[20] Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recog-

nition, arXiv preprint arXiv:1409.1556, (2014), https://doi.org/10.48550/arXiv.1409.1556.

[21] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., Keutzer, K., SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size, arXiv preprint

arXiv:1602.07360, (2016), https://doi.org/10.48550/arXiv.1602.07360.

[22] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., Going deeper with convolutions, CVPR, (2015), 1-9,

https://doi.org/10.48550/arXiv.1409.4842.

[23] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C., Mo-
bilenetv2: Inverted residuals and linear bottlenecks, CVPR, (2018), 4510-4520,

https://doi.org/10.48550/arXiv.1801.04381.
[24] He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition, CVPR,

(2016), 770-778, https://doi.org/10.48550/arXiv.1512.03385.

[25] Chollet, F., Xception: Deep learning with depthwise separable convolutions, CVPR, (2017),
1251-1258, https://doi.org/10.48550/arXiv.1610.02357.

[26] Jaiswal, A., Gianchandani, N., Singh D., Kumar, V., Kaur, M., Classification of the COVID-

19 infected patients using DenseNet201 based deep transfer learning, J. Biomol. Struct. Dyn.,
(2017), 4700-4708, https://doi.org/10.1080/07391102.2020.1788642.

[27] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q., Densely connected convolutional

networks, CVPR, (2020), 1-8, https://doi.org/10.48550/arXiv.1608.06993.
[28] Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., Zheng, C., A weakly-

supervised framework for COVID-19 classification and lesion localization from chest CT, IEEE

Trans. Med. Imaging., 39 (8) (2020), 2615-2625, https://doi.org/10.1109/TMI.2020.2995965.
[29] Ronneberger, O., Fischer, P., Brox, T., U-net: Convolutional networks for biomedical image

segmentation, MICCAI, (2015), 234-241, https://doi.org/10.48550/arXiv.1505.04597.
[30] Kingma, D. P., Ba, J., Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980, (2014), https://doi.org/10.48550/arXiv.1412.6980.

[31] Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., Chen, Q., Huang, S.,
Yang, M., Yang, X., et al., Deep learning-based model for detecting 2019 novel coron-

avirus pneumonia on high-resolution computed tomography, Sci. Rep., 10 (1) (2020), 1-11,

https://doi.org/10.1038/s41598-020-76282-0.
[32] Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., Liang, J., Unet++: A nested u-

net architecture for medical image segmentation, DLMIA and ML-CDS, (2018), 3-11,

https://doi.org/10.48550/arXiv.1807.10165.
[33] Song, Y., Zheng, S., Li, L., Zhang, X., Zhang, X., Huang, Z., Chen, J., Wang, R., Zhao, H.,

Zha, Y., et al.,Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with

CT images, TCBB, (2021), https://doi.org/10.1109/TCBB.2021.3065361.
[34] Gozes, O., Frid-Adar, M., Greenspan, H., Browning P. D., Zhang, H., Ji, W., Bernheim, A.,

Siegel, E., Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results
for automated detection & patient monitoring using deep learning ct image analysis, arXiv

preprint arXiv:2003.05037, (2020), https://doi.org/10.48550/arXiv.2003.05037.

[35] He, X., Yang, X., Zhang, S., Zhao, J., Zhang, Y., Xing, E., Xie, P., Sample-
efficient deep learning for COVID-19 diagnosis based on CT scans, medrxiv, (2020),

https://doi.org/10.1101/2020.04.13.20063941.
[36] Soares, E., Angelov, P., Biaso, S., Froes, M. H., Abe, D. K., SARS-CoV-2 CT-scan dataset:

A large dataset of real patients CT scans for SARS-CoV-2 identification, medRxiv, (2020)

https://doi.org/10.1101/2020.04.24.20078584.



ML BASED PREDICTION OF COVID-19 DIAGNOSIS USING STATISTICAL TESTS 99

[37] Duchi, J., Hazan, E., Singer, Y., Adaptive subgradient methods for online learning and

stochastic optimization, JMLR, 12 (7) (2011).

[38] Dozat, T., Incorporating nesterov momentum into adam, ICLR, (2016), 1-4.
[39] Rude, S., An overview of gradient descent optimization algorithms, arXiv preprint

arXiv:1609.04747, (2016), https://doi.org/10.48550/arXiv.1609.04747.

[40] Nair, V., Hinton, G. E., Rectified linear units improve restricted boltzmann machines, ICML,
(2010), 807-814.

[41] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., Grad-cam:

Visual explanations from deep networks via gradient-based localization, Proc. IEEE Int. Conf.
Comput. Vis., (2017), 618-626 https://doi.org/10.48550/arXiv.1610.02391.


	1. INTRODUCTION
	2. Material and Method
	2.1. Data set
	2.2. Architectures
	2.3. Optimizer

	3. The Experimental Section and Discussion
	3.1. Parameter Settings
	3.2. Experimental Results
	3.3. Statistical Significance in Each Performance Evaluation

	4. Conclusion
	References

