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Abstract
The new priority in the grey modelling is to build new models that have more accurate
forecasting power than the previous ones. This paper aims to develop the prediction
performance of the existing continuous grey models. Therefore, a novel continuous grey
model (OCCFGM(1,1)) is proposed with conformable fractional derivative. The numerical
results of three case studies show that the novel model’s prediction accuracy is higher than
other competitive models, and the proposed model is more reasonable for practical cases.

Mathematics Subject Classification (2020). 60G25, 34B60, 68U01

Keywords. Grey systems, conformable fractional derivative, fractional grey model,
OCCFGM model

1. Introduction
The grey systems theory as a systems analysis, which includes control and decision-

making, modeling, prediction, was proposed by Prof. Deng Julong in 1982 [6]. The grey
modelling in the prediction of time series has been one of the interesting study fields
of recent times due to its efficiently and convenience. According to this theory, known,
unknown, and semi-known information of the system are represented in white, black and
grey, respectively. The term semi-known here means the shortage or lack of information.
Therefore the grey prediction models have been a useful tool in processing uncertain or
excursive systems with small samples and limited data set as distinct from the machine
learning models, the artificial neural network (ANN), hybrid models, the empirical models,
and support vector regression models (SVR), etc. [1, 9, 21, 24, 27]. In addition, the small
sample usually has more accuracy than the large sample size. However, if the raw data
sequence satisfies the conditions of non-negative, quasi-smooth and quasi-exponential then
the standard grey model can perform well predictions even with large number of samples
[31]. Today, the grey prediction models have been widely and successfully applied to
various fields, such as science and technology, agriculture, energy, environmental problems,
economy, health, meteorology and other fields [2, 3, 7, 10,25,30,41,43,44].
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Recent research on grey modeling focuses on two main purposes: practicality and pre-
diction accuracy. For these purposes, important studies have been carried out in the
last years. Ma and Lui [17] proposed a time-delayed polynomial grey prediction model
called TDPGM (1,1), a nonhomogeneous grey forecasting model NGM (1,1,k,c) and its
optimized (NGMO (1,1,k,c)) is proposed by [4], the grey polynomial model with a tuned
background coefficient is proposed by [29], Cui et al. [5] developed a parameter opti-
mization method to improve the ONGM (1,1,k) model, Bilgil [3] proposed an exponential
grey model named EXGM(1,1), Ma et al. [18] developed a novel nonlinear multivariate
forecasting grey model based on the Bernoulli equation named NGBMC (1, n), Wang et
al. [28] introduced a seasonal grey model called SGM (1,1), Wu et al. [33] proposed a
new grey model called BNGM (1,1,t2) model, Liu and Wu [15] proposed ANDGM model,
kernel-based KARGM(1,1) model is proposed by [16], Li et al. [13] developed structure-
adaptive intelligent grey forecasting model, Wu et al. [34] developed a novel grey Riccati
model (GRM), the modified grey prediction model with damping trend factor is proposed
by [14], the nonlinear grey Bernoulli model with improved parameters, INGBM (1, 1), is
proposed by [11].

Traditional grey models are defined with first order whitening differential equations
and they are characterized by their simplicity. However, if the case data is a disordered
sequence, the characteristic features of the sequence may not exactly find out by first order
accumulative generation operation (AGO) [40]. In addition, first order derivative models
are ideal memory models, which are not suitable for describing irregular phenomena.
Fractional grey models, on the other hand, have become preferable, despite the difficulty
in calculations, since they give more effective results than standard models. Difficulties in
fractional accumulation and difference calculations have begun to be overcome thanks to
new definitions and theorems made in recent years. The new trend in grey modelling is
to compose models that are more useful than the previous ones and give results with less
error. As a result of this, the parameters of the model may not be compatible according to
the data characteristics of the actual problem for a sequence with large data fluctuation.
Therefore, fractional accumulation generating operation and fractional derivative should
be introduced into the grey model to overcome this problem [40].

Wu et al. [32] first proposed the fractional accumulation GM(1,1) model known as the
FAGM(1,1) by extending the integer accumulated generating operation into the fractional
accumulated generating operation. The computational results shows that the FAGM(1,1)
has outstanding performance than the traditional GM(1,1) model. Some researchers op-
timized the FAGM(1,1) model and achieved better prediction accuracy in recent years.
A fractional grey model FANGM(1,1,k,c) is proposed by [35]. Mao et al. introduced the
fractional grey model FGM(q,1) [20], a power-driven fractional accumulated grey model
named PFAGM is proposed by [42], Yuxiao et al. [40] proposed the multivariable Caputo
fractional derivative grey model with convolution integral named CFGMC(q,N).

Lately, a limit-based fractional derivative called conformable fractional derivative was
introduced by [12]. The structure of conformable fractional derivative is more simpler than
other popular fractional derivatives, such as the Caputo derivative, Atangana-Baleanu
derivative and Riemann-Liouville derivative. Then, the new definitions of the fractional
accumulation and fractional difference based on the conformable fractional derivative in
which the computational complexity of accumulation is lower than that of the traditional
fractional accumulated operator and they firstly proposed an improved fractional order
grey model named CFGM(1,1). A conformable fractional non-homogeneous grey model
CFNGM (1,1,k,c) is proposed by [36]. Xie et al. [38] developed a conformable fractional
grey model in opposite direction CFGOM(1,1). Xie et al. [39] introduced an improved
conformable fractional non-homogeneous grey model named CFONGM(1,1,k,c). Recently,
a continuous grey model with conformable fractional derivative is proposed by [37].
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1.1. Contribution
In summary, the innovation points of this paper are summarized as follows:
(1) A novel fractional grey model (OCCFGM(1,1)) with conformable fractional differ-

ence and accumulation is proposed.
(2) Generally all grey models in the literature are suitable when the given data se-

quence satisfies exponential growth. However, the abnormal increasing in the given
data will have negatively effects on the prediction accuracy. An other innovation of
this article is to improve predictive accuracy by adding a decreasing term,

(
e−tr),

in the whitenization differential equation. Therefore, the monotone decreasing
term

(
e−tr) will suppress the growth of the prediction error.

(3) The Brute Force algorithm is employed to find the optimal value of fractional
order.

(4) Three case studies are provided for verifying the validation of OCCFGM(1,1).
(5) The numerical results of three case studies show that the novel model’s prediction

accuracy is higher than other competitive models.
(6) The proposed model is more suitable for all practical cases.

The rest of this paper is organized below: Section 1 includes relevant literature. A brief
overview of the conformable fractional derivative and the definitions of the conformable
fractional difference and accumulation are given in Section 2. The presentations and
modelling procedures of the OCCFGM(1,1) are introduced in Section 3. In Section 4, the
mechanism of obtaining optimal parameters is given. We present a series of case studies to
confirm the effect of OCCFGM(1,1) in Section 5. Finally, main conclusions of this article
are given in Sections 6.

2. Definitions and properties of conformable fractional derivative, frac-
tional accumulation and fractional difference

In this section, a brief overview of the conformable fractional derivative with some useful
properties is given. In addition, the definitions of the conformable fractional difference and
the conformable fractional accumulation by [19] are summarized.

2.1. The conformable fractional derivative
Definition 2.1. (See [19]). Given a differentiable function f : [0, ∞) → R. Then the
conformable fractional derivative of f with α ∈ (n, n + 1] order is defined as

Tα (f) (t) = lim
ε→0

f(t + εt⌈α⌉−α) − f (t)
ε

= t⌈α⌉−α df (t)
dt

, (2.1)

where ⌈.⌉ is the ceil function, i. e. the ⌈α⌉ is the smallest integer no larger than α. It is
clear that ⌈α⌉ = 1 for α ∈ (0, 1]. Hence, Equation (2.1) can be written as

Tα (f) (t) = lim
ε→0

f(t + εt1−α) − f (t)
ε

= t1−α df (t)
dt

,

for all t > 0.

The properties of this new definition (2.1) are given below.

Remark 2.2. (See [12]). The α order conformable derivative is defined as follows:

Tα (f) (t) = lim
ε→0

f (n)(t + εt⌈α⌉−α) − f (n) (t)
ε

= t⌈α⌉−α dn+1f (t)
dtn+1 , (2.2)

for all t > 0, α ∈ (n, n + 1], n ∈ N , and f is (n + 1)−differentiable. if α ∈ (0, 1] then,
Equation (2.2) convert to Definition (2.1).

The following theorem gives the properties of the conformable derivation [12].
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Theorem 2.3. (See [12]). If the function f and g are differentiable, α ∈ (0, 1], then we
have

1. Tα (f) (t) = t1−α df(t)
dt ,

2. Tα (mf + ng) = mTα (f) + nTα (g) for all m, n ∈ R,
3. Tα (f.g) = fTα (g) + gTα (f) ,

4. Tα

(
f
g

)
= gTα(f)−fTα(g)

g2 ,

5. Tα (c) = 0 for all constant c,
6. Tα (tp) = ptp−α for all p ∈ R,
7. Tα (ecx) = cx1−αecx for all c ∈ R.

2.2. The conformable fractional accumulation and difference
New definitions to calculate the conformable fractional accumulation (CFA) and the

conformable fractional difference (CFD) are given by [19] as follows:

Definition 2.4. (See [19]). The conformable fractional difference (CFD) of f with α
order is defined as

∆αf(k) = k1−α∆f(k) = k1−α [f(k) − f(k − 1)] ,

for all k ∈ N+, α ∈ (0, 1] and

∆αf(k) = k⌈α⌉−α∆n+1f(k), (2.3)
for all k ∈ N+, α ∈ (n, n + 1] .

Definition 2.5. (See [19]). The conformable fractional accumulation (CFA) of f with α
order is defined as

∇αf(k) = ∇
(

f(k)
k1−α

)
=

k∑
j=1

f(j)
j1−α

, (2.4)

for all k ∈ N+, α ∈ (0, 1] and

∇αf(k) = ∇n+1
(

f(k)
k⌈α⌉−α

)
, (2.5)

for all k ∈ N+, α ∈ (n, n + 1] .

Definition 2.6. (See [8]). For the original series X(0) =
(
x(0)(1), x(0)(2), ..., x(0)(n)

)
,

r-order fractional order inverse accumulation X(−r) =
(
x(−r)(1), x(−r)(2), ..., x(−r)(n)

)
is

defined as

x(−r)(k) =
k∑

i=1

(
k − i − r − 1

k − i

)
x(0)(i), k = 1, 2, . . . , n, (2.6)

where (
k − i − r − 1

k − i

)
= (k − i − r − 1)!

(k − i)!(−r − i)!
.

In addition, the fractional order reducing generation sequence of X(0)(k) was defined
by [22] and a negative fractional order accumulated operation was introduced by [26].

3. Presentation of exponential conformable fractional grey model
In this section, a novel conformable fractional grey model OCCFGM(1,1) is introduced,

which optimizes the CCFGM(1,1) model [37] with an exponential grey action quantity.
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3.1. Formulation of proposed fractional grey model

With the original series X(0) =
(
x(0)(1), x(0)(2), . . . , x(0)(n)

)
we firstly denote the α

order CFA as
X(α) =

(
x(α)(1), x(α)(2), dots, x(α)(n)

)
, (3.1)

where

x(α)(k) = ∇αx(0)(k) =
k∑

i=1

[
⌈α⌉

k − i

]
x(0)(i)
i⌈α⌉−α

, α ∈ R+ (3.2)

where ⌈.⌉ is the ceil function and
[⌈α⌉
k−i

]
= Γ(k−i+⌈α⌉)

Γ(k−i+1)Γ(⌈α⌉) = (k−i+⌈α⌉−1)!
(k−i)!(⌈α⌉−1)! (see [36]).

Definition 3.1. The r-order whitening differential equation of the OCCFGM(1,1) is de-
fined as

drx(α)(t)
dtr

+ ax(α)(t) = b + ce−tr
, (3.3)

where r ∈ [0, 1] and a is a development coefficient, b is called driving coefficient and
ce−tr is an exponential grey action quantity. So that, the monotone decreasing term ce−tr

will suppress the growth of the prediction error.

When c = 0, it yields the CCFGM(1,1) [37]. In addition, the OCCFGM(1,1) model can
be translated to the conventional CFGM(1,1) model for r = 1 and c = 0 [19].

3.2. Parameters estimation
Theorem 3.2. With given data and the value of fractional orders (α and r), the system
parameters a, b and c of the OCCFGM(1,1) model are[

â, b̂, ĉ
]T

=
(
BT B

)−1
BT Y, (3.4)

where the matrix B and Y are

B =


−0.5(x(α)(2) + x(α)(1)) 1 0.5(e−2r + e−1r )
−0.5(x(α)(3) + x(α)(2)) 1 0.5(e−3r + e−2r )

. . .

. . .

−0.5(x(α)(n) + x(α)(n − 1)) 1 0.5(e−nr + e−(n−1)r )

 , Y =


x(α−r)(2)
x(α−r)(3)

.

.

x(α−r)(n)

 , ρ̂ =

 â

b̂
ĉ

 . (3.5)

Proof. The discrete form of the whitening Equation (3.3) can be obtained by integrated
all the terms from k − 1 to k and using the trapezoid formula for the second integral as∫ ∫

...

k∫
k−1

drx(α)(t)
dtr

dtr + a

∫ ∫
...

k∫
k−1

x(α)(t)dtr =
∫ ∫

...

k∫
k−1

(b + ce−t)dtr. (3.6)

The first item of the left-hand side is easily yielded that∫ ∫
...

k∫
k−1

drx(α)(t)
dtr

dtr ≈ ∆rx(α)(k) = x(α−r)(k). (3.7)

Then, using the generalized trapezoid formula [37], the second item of the left-hand side
can be obtained as

a

∫ ∫
...

k∫
k−1

x(α)(t)dtr ≈ a

2

(
x(α)(k) + x(α)(k − 1)

)
. (3.8)
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The right-hand side can be obtained by reference [39], which

∫ ∫
...

k∫
k−1

(b + ce−t)dtr = b + c

2
(e−kr + e−(k−1)r ), (3.9)

so
x(α−r)(k) + a

2

(
x(α)(k) + x(α)(k − 1)

)
= b + c

2
(e−kr + e−(k−1)r ), (3.10)

where k = 2, 3, . . . , n.
The linear equations system (3.10) can be written as follows:

x(α−r)(2) = −0.5a(x(α)(2) + x(α)(1)) + b + 0.5 c (e−2r + e−1r ) (3.11)
x(α−r)(3) = −0.5a(x(α)(3) + x(α)(2)) + b + 0.5 c (e−3r + e−2r )

.

.

.

x(α−r)(n) = −0.5a(x(α)(n) + x(α)(n − 1)) + b + 0.5 c (e−nr + e−(n−1)r )

and system in Equation (3.11) can be written as

Y = B ρ̂. (3.12)

According to Equation (3.12), using the least square method to calculate the parameters[
â, b̂, ĉ

]T
with given samples and α as follow:

[
â, b̂, ĉ

]T
=
(
BT B

)−1
BT Y, (3.13)

where

B =


−0.5(x(α)(2) + x(α)(1)) 1 0.5(e−2r + e−1r )
−0.5(x(α)(3) + x(α)(2)) 1 0.5(e−3r + e−2r )

. . .

. . .

−0.5(x(α)(n) + x(α)(n − 1)) 1 0.5(e−nr + e−(n−1)r )

 , Y =


x(α−r)(2)
x(α−r)(3)

.

.

x(α−r)(n)

 , ρ =

 a
b
c

 (3.14)

in which n is the number of samples used to construct the model. Thence the proof is
completed by using the least square estimation method. �

3.3. Response function and restored values
Theorem 3.3. The discrete form of the response function of OCCFGM(1,1) model is
given as

x̂(α)(k) =
(

x(0)(1) − b

a
− c

a − r
e−1

)
e

a
r

(1−kr) + b

a
+ c

a − r
e−kr

, (3.15)

where k = 2, 3, . . . , n.

Proof. It is clear that, by using Teorem 1 and item 1, the r order whitening differential
equation (3.3) can be written as

t1−r dx(α)(t)
dt

+ ax(α)(t) = b + ce−tr
. (3.16)

Then, the solution of the first order linear differential equation (3.16) can be obtained as

x(α)(t) = b

a
+ c

a − r
e−tr + de− a

r
tr

, (3.17)
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where d is integral constant. By using the initial condition x(α)(1) = x(0)(1), the constant
d can be found as

d =
(

x(0)(1) − b

a
− c

a − r
e−1

)
e

a
r .

Therefore the grey prediction model Equation (3.17) can be obtained as following

x̂(α)(t) =
(

x(0)(1) − b

a
− c

a − r
e−1

)
e

a
r

(1−tr) + b

a
+ c

a − r
e−tr

and the discrete form of the response function can be write as

x̂(α)(k) =
(

x(0)(1) − b

a
− c

a − r
e−1

)
e

a
r

(1−kr) + b

a
+ c

a − r
e−kr

.

The proof is completed. �
Theorem 3.4. The restored values can be given as

x̂(0)(k) = ∆αx̂(α)(k) = k⌈α⌉−α∆n+1x̂(α)(k), α ∈ (n, n + 1], (3.18)
where k = 2, 3, . . . , n.

Proof. From Equation (3.2) it can be seen that x̂(α)(k) = ∇αx̂(0)(k). If we apply the
inverse operator ∆α, it is obtained as

x̂(0)(k) = ∆αx̂(α)(k)
and from Definition (2.4), it can be written as

x̂(0)(k) = ∆αx̂(α)(k) = k⌈α⌉−α∆n+1x̂(α)(k), α ∈ (n, n + 1].
Particularly, when α ∈ (0, 1] the restored values can be written as

x̂(0)(k) = k1−α(x̂(α)(k) − x̂(α)(k − 1)). (3.19)
Thence the proof is completed. �

3.4. Evaluative accuracy of the forecasting model
To evaluate the prediction accuracy of OCCFGM(1,1), relative percentage error (RPE)

and the mean absolute percentage error (MAPE) are used to evaluate the level of prediction
performance of the prediction models. They are defined as follows:

RPE(k) =
∣∣∣∣∣ x̂(0)(k) − x(0)(k)

x(0)(k)

∣∣∣∣∣× 100, (3.20)

MAPE = 1
n

n∑
k=1

RPE(k), (3.21)

where x(0)(k) is the original series, and x̂(0)(k) is the predicted series.

4. Brute Force algorithm for optimal α and r

In this section, our purpose is to find the optimum parameters α and r that minimizes
the model’s mean absolute percentage error (MAPE).

Brute Force is a straightforward approach, which is also known as the Naive algorithm,
for solving optimization problems that rely on sheer computing power and trying every
possibility rather than advanced techniques to improve efficiency. Unlike some of the other
popular swarm intelligence algorithms, Brute Force is applicable to a very wide variety of
problems and it is effective and easy method to find the optimum value in the solution
domain.
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Despite the convergence speed advantages of other algorithms, it is a disadvantage that
they may focus on local extremum point rather than the global extremum. However,
Brute Force algorithm scans the whole domain, evaluates each point, then calculates the
MAPE’s on these points and reaches optimum parameters without any delusion.

The optimum (α, r) value is searched within the rectangular domain bounded by α ∈
[0, 1.4] and r ∈ [0, 1.5] (see Figure 1). First by fixing α = 0, r takes all the values from 0
to 1.5 with h = 0.01 step width. Then by fixing α = α + h, r takes all the values from
0 to 1.5 with h = 0.01 step width (see Figure 2). This procedure is performed until the
entire region has been scanned. In this way, all the (α, r) points in the whole region and
the MAPE’s at these points are calculated. Hence α and r, which give the minimum of
the calculated MAPE’s, are determined as the optimum parameters.

All these processes are completed in about 10 seconds by writing a simple FORTRAN
code.

 

 

 

0 1 . 5
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Figure 1. The search region and (α, r) points for Brute Force algorithm.
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Figure 2. The Brute Force mechanism.
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5. Validation of the OCCFGM(1,1)
This section provides three case studies to demonstrate the efficacy of the proposed

model.

5.1. Case 1: Domestic energy consumption of China
In this subsection, we use the novel OCCFGM(1,1) model to predict domestic energy

consumption of China (104 tons of standard coal). The raw data set and some columns
from paper [37] are used to test for efficacy and applicability of the proposed fractional
grey model.

By using the Brute Force algorithm, the optimum α and r values are obtained as
α = 0.92 and r = 1.02 with 0.9583 Mape. Mapes of all the points within the α − r region
are calculated and the MAPE’s are shown in Figure 3.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

0 . 0

0 . 5
1 . 0

1 . 5

MA
PE

r    
    

  

α

Figure 3. The region of α − r and MAPE values of the all (α, r) points for case
1.

Table 1. Numerical results for domestic energy consumption of China obtained
by FAGM, ANN, TDPGM, ARIMA, EXGM, SVR, CCFGM and OCCFGM.

Year RAW FAGM ANN TDPGM ARIMA EXGM SVR CCFGM OCCFGM
2005 27573 27573.00 27576.24 27573.00 27573.00 27573.00 27572.90 27573.00 27573.00
2006 27765 28776.69 28801.47 27990.63 29893,26 28238.42 29574.73 27207.68 27763.98
2007 30814 30529.07 30403.47 30011.65 29728,94 30145.47 31576.57 28992.48 29705.97
2008 31898 32510.82 32409.59 32146.03 33080,51 32181.29 33578.40 31373.76 31919.92
2009 33843 34650.97 34790.27 34398.83 33991,82 34354.57 35580.23 33965.07 34275.81
2010 36470 36925.23 37441.64 36775.47 35987,78 36674.52 37582.07 36671.07 36730.58
2011 39584 39324.40 40193.56 39281.80 38770,78 39150.89 39583.90 39459.34 39280.02
2012 42306 41845.55 42848.65 41924.09 42069,85 41793.80 41585.73 42317.23 41933.19
2013 45531 44488.93 45235.79 44709.09 44834,20 44613.27 43587.57 45239.62 44702.68
2014 47212 47256.57 47249.65 47644.06 48177,20 47617.93 45589.40 48224.63 47601.47
2015 50099 50151.64 48859.33 50736.80 49648,76 50811.34 47591.23 51271.90 50642.18
2016 54209 52721.73 50091.35 53995.70 52627,12 54181.88 49593.07 54381.79 53837.07
2017 57620 55350.93 51003.38 57429.77 57016,85 57675.30 51594.90 57555.00 57198.20

MAPE 1.73 3.00 1.00 2.13 1.57 4.58 1.38 0.96
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Furthermore, the OCCFGM(1,1) model compared with the six effective models, includ-
ing the FAGM, ANN, TDPGM, ARIMA, EXGM, SVR and CCFGM. As can be seen from
Table 1, OCCFGM(1,1) yielded the lower MAPE compared with other powerful models.
The simulation of these models for the raw data of China’s domestic energy consumption
is given in Figure 4. The MAPEs of other competing models and the novel model are
calculated as 1.73%, 3.00%, 1.00%, 2.13%, 1.57%, 4.58%, 1.38% and 0.96%, respectively
(see Figure 5). From a short-term forecasting viewpoint, OCCFGM(1,1) produced the
lowest Mape compared with the other models, which means that the proposed model,
OCCFGM(1,1), has highly accurate forecasting power.
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Figure 4. Simulative curves with seven models for domestic energy consumption
of China.
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Figure 5. MAPEs of domestic energy consumption of China by FAGM, ANN,
TDPGM, ARIMA, EXGM, SVR, CCFGM and OCCFGM models.

Forecasting values of China’s domestic energy consumption using OCCFGM(1,1) up to
2025 are listed in Table 2 and Figure 6. The forecasting results show that China’s energy
consumption growth over our observation period.



318 Z. Öztürk, H. Bilgil, Ü. Erdinç

Table 2. Forecasting values of China’s domestic energy consumption using OC-
CFGM.

Years Forecasting values (104 tons of standard coal)
2018 60737.6424
2019 64467.6610
2020 68400.8194
2021 72550.1069
2022 76929.0258
2023 81551.6697
2024 86432.7943
2025 91587.8835
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Figure 6. Forecasting results of OCCFGM(1,1) for domestic energy consumption
of China.

5.2. Case 2
The CO2 emission of Russia is studied in this subsection. The raw data set and some

columns from paper [36] are used to test for efficacy and applicability of the proposed
fractional grey model. Although the raw data of Russia is non-stationarity, the forecasting
results show that the novel OCCFGM(1,1) model yielded the lower MAPE compared with
other new models.

The optimum α and r values are obtained as α = 0.84 and r = 0.97 with 1.499 MAPE
by using the Brute Force algorithm. MAPEs of all the points within the α − r region
are calculated in a short time (nearly 10 seconds ) by writing a simple FORTRAN code.
The MAPE values of the points in the region and the track of searching for the optimal
parameters are graphed in Figure 7.

Furthermore, the OCCFGM(1,1) model compared with the six effective models, in-
cluding the GM, ARIMA, NGMO, TDPGM, FAGM, FANGM and CFNGM. As can be
seen from Table 3, OCCFGM(1,1) yielded the lower MAPE compared with other new
models. The simulation of these models for the raw data of Russia’s CO2 emissions is
given in Figure 8. The MAPE’s of other competing models and the novel model are
1.83%, 1.61%, 1.81%, 1.59%, 1.66%, 1.64%, 1.71% and 1.50%, respectively (see Figure 9).
From a short-term forecasting viewpoint, OCCFGM(1,1) produced the lowest Mape com-
pared with the other models, which means that the proposed novel model, OCCFGM(1,1),
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has highly accurate forecasting power. Forecasting values of Russia’s CO2 emission using
OCCFGM(1,1) up to 2025 are listed in Table 4 and Figure 10.
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Figure 7. The region of α − r and MAPE values of the all (α, r) points for Case
2.

Table 3. Numerical results for CO2 emissions of Russia obtained by GM, ARIMA,
NGMO, TDPGM, FAGM, FANGM, CFNGM and OCCFGM (million tones).

Year RAW GM(1,1) ARIMA NGMO TDPGM FAGM FANGM CFNGM OCCFGM
2000 1453.30 1453.30 1453.30 1453.30 1453.30 1453.30 1453.30 1453.30 1453.30
2001 1466.50 1485.90 1472,30 1466.69 1458.21 1444.28 1455.65 1477.86 1476.91
2002 1466.30 1488.44 1482,64 1475.27 1472.03 1461.78 1466.31 1459.90 1466.67
2003 1495.20 1491.09 1484,91 1483.21 1483.73 1480.59 1478.18 1477.79 1476.13
2004 1490.30 1492.75 1502,46 1490.56 1493.48 1496.56 1489.58 1490.74 1490.15
2005 1466.60 1496.42 1500,20 1497.37 1501.43 1509.01 1499.94 1500.51 1503.28
2006 1535.00 1499.09 1491,06 1503.67 1507.73 1518.19 1508.99 1508.07 1513.88
2007 1528.10 1501.76 1529,85 1509.50 1512.55 1524.56 1516.63 1514.00 1521.74
2008 1554.30 1504.44 1522,50 1514.90 1516.04 1528.61 1522.83 1518.66 1527.09
2009 1445.30 1507.12 1535,24 1519.90 1518.37 1530.79 1527.57 1522.33 1530.29
2010 1492.20 1509.81 1478,16 1524.53 1519.71 1531.49 1530.90 1525.18 1531.67
2011 1555.90 1512.50 1512,28 1528.81 1520.23 1531.02 1532.82 1527.36 1531.51
2012 1569.10 1515.20 1544,16 1532.77 1520.09 1529.65 1533.39 1528.97 1530.05
2013 1527.70 1517.90 1545,99 1536.44 1519.47 1527.60 1532.65 1530.09 1527.48
2014 1530.80 1520.61 1521,96 1539.84 1518.54 1525.03 1530.63 1530.80 1523.96
2015 1489.50 1523.32 1524,94 1542.99 1517.48 1522.09 1527.39 1531.14 1519.62
2016 1501.50 1526.04 1503,95 1545.90 1516.48 1518.88 1522.98 1531.16 1514.57
2017 1488.40 1528.76 1514,62 1548.60 1515.71 1515.50 1517.42 1530.89 1508.89
2018 1550.80 1531.48 1510,06 1551.09 1515.36 1512.00 1510.78 1530.37 1502.67

MAPE 1.83 1.61 1.81 1.59 1.66 1.64 1.71 1.50

5.3. Case 3
Recently, the fractional order accumulated grey prediction model FAGM(1,1) is applied

to predict per capita water consumption of 31 regions in China from 2019 to 2024 [23].
In this subsection, we use the novel OCCFGM(1,1) model to predict future drinking
water demand for Turkey. In addition, this subsection presents a systematic predicting
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Figure 8. Simulative curves with seven models for CO2 emissions of Russia.
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Figure 9. MAPEs of CO2 emissions of Russia by GM, ARIMA, NGMO,
TDPGM, FAGM, FANGM, CFNGM and OCCFGM models.

Table 4. Forecasting values of CO2 emissions of Russia using OCCFGM.

Years Forecasting values (million tonnes)
2019 1495.9629
2020 1488.8365
2021 1481.3359
2022 1473.5040
2023 1465.3785
2024 1456.9923
2025 1448.3752

methodology which includes data collection, parameter estimation, result analysis and
future drinking water demand for Turkey. Turkish Statistical Institute (TUIK) reports
complete, correct and official data. The data includes the amount of total drinking water
drawn from resources between 2008 and 2018 (thousand m3/year) in Turkey.

The optimum α and r values are obtained as α = 0.58 and r = 0.96 with 0.6547
MAPE by using the Brute Force algorithm. MAPEs of all the points within the α − r
region are calculated in a short time (nearly 10 second ) by writing a simple FORTRAN
code. The MAPE values of the points in the region and the track of searching for the
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Figure 10. Forecasting results of OCCFGM(1,1) for CO2 emissions of Russia.

optimal parameters are graphed in Figure 11. In addition, the optimum α value for the
CFGM(1,1) model is obtained as α = 1 by using the Brute Force algorithm. Hence, the
CFGM(1,1) model turn into standard GM(1,1) model for this raw data. For this reason,
the forecasting values of these two models are same.
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Figure 11. The region of α−r and MAPE values of the all (α, r) points for Case
3.

Furthermore, the OCCFGM(1,1) model compared with the five effective models, in-
cluding the EXGM, ARIMA, GM, ONGM, TDPGM and CFGM. As can be seen from
Table 5, OCCFGM(1,1) yielded the lower MAPE compared with other models. The sim-
ulation of these models for the raw data of drinking water consumption of Turkey is
given in Figure 12. The MAPEs of other competing models and the novel model are
0.66%, 0.97%, 1.35%, 5.14%, 4.80%, 1.35% and 0.65%, respectively (see Figure 13). From a
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short-term forecasting viewpoint, OCCFGM(1,1) produced the lowest MAPE compared
with the other models, which means that the proposed novel model, OCCFGM(1,1), has
highly accurate forecasting power.

Table 5. Numerical results for total drinking water drawn from resources in
Turkey obtained by EXGM, ARIMA, GM, ONGM, TDPGM, CFGM and OC-
CFGM (thousand m3/year).

Year Actual Value EXGM ARIMA GM(1,1) ONGM(1,1) TDPGM CFGM OCCFGM
2008 4546574.00 4546574.00 4546574.00 4546574.00 4546574.00 4546574.00 4546574.00 4546574.00
2010 4784734.00 4778345.14 4823049,39 4670431.88 4235894.33 5220119.92 4670431.88 4768929.14
2012 4936342.00 4942384.36 5018419,60 5007438.87 5181165.10 5254997.91 5007438.87 4936652.24
2014 5237407.00 5289990.29 5179886,59 5368763.47 5574286.36 5593705.01 5368763.47 5307095.84
2016 5838561.27 5721038.75 5745807,76 5756160.36 5737778.48 6025127.79 5756160.36 5765923.61
2018 6193157.54 6234712.30 6232945,90 6171510.88 5805771.93 6393223.44 6171510.88 6256134.72

MAPE 0.66 0.97 1.35 5.14 4.80 1.35 0.65
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Figure 12. Simulative curves with six models for Case 3.
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Figure 13. MAPEs of total drinking water drawn from resources in Turkey by
EXGM, ARIMA, GM, ONGM, TDPGM, CFGM and OCCFGM models.
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Scientific simulation and accurate forecasting of the future drinking water consumption
are important to ensure the supply-demand balance of water. Furthermore, Turkey’s
drinking water consumption during 2020 to 2028 has been forecasted by the OCCFGM(1,1)
in this subsection (see Table 6). The forecasting results provide the growth trend of the
future drinking water consumption of Turkey, and also offer a guideline for policymaking
and project planning (see Figure 6). It can be observed that OCCFGM(1,1) is quite
practical to use, with satisfactory accuracy in drinking water consumption forecasting
with the smallest MAPE when compared with the comparison models.

Table 6. Forecasting values of total drinking water drawn from sources in Turkey
using OCCFGM.

Years Forecasting values (thousand m3/ year)
2020 6753647.40
2022 7249829.00
2024 7742626.36
2026 8232539.20
2028 8720907.75

2 0 0 8 2 0 1 2 2 0 1 6 2 0 2 0 2 0 2 4 2 0 2 8
4 x 1 0 6

5 x 1 0 6

6 x 1 0 6

7 x 1 0 6

8 x 1 0 6

9 x 1 0 6

1 x 1 0 7

F o r e c a s t i n g  v a l u e s

������������������������������

����������������
−•− �������−•− 	�������

Dr
ink

ing
 wa

ter
 dr

aw
n f

rom
 so

urc
es

 in
 Tu

rke
y


���

Figure 14. Forecasting results of OCCFGM(1,1) for drinking water demand of
Turkey.

6. Conclusions
Since the fractional calculations are most important to the grey prediction model, there

are many scholars proposing new methods on the fractional grey models. Hence, a novel
optimization for the CCFGM(1,1) model based on the conformable fractional difference
and conformable fractional accumulation has been developed in this study. The results
of the numerical examples indicated that the proposed grey prediction model aims to
achieve very effective performance. The structural parameters (a, b and c) of the model
can be dynamically adjusted according to the actual system. The optimal value of frac-
tional order, α and r are calculated by using the brute-force approach. The proposed
OCCFGM(1,1) model is suitable for predicting the data sequence with the characteris-
tics of non-homogeneous exponential law. The OCCFGM(1,1) model has achieved higher
accuracy than the comparison models such as EXGM, GM, ARIMA, ONGM, TDPGM,
CFGM, NGMO, FAGM, FANGM, CFNGM, ANN, SVR and CCFGM. However, they can
all be employed for estimations.
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Using three case studies in Section 5, we have shown that the MAPE of the OC-
CFGM(1,1) model is very low. The proposed OCCFGM(1,1) model maybe plays an
important role in enriching the theoretical system of grey forecasting theory and it can be
used for other real cases of small sample forecasting in the future. In addition, the com-
bination of other fractional forecasting models, especially for the time series with highly
effective, is also an interesting direction for next studies.
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