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Abstract   
The development of pavement management tools using intelligent algorithms requires a robust form of 
data mining – data classification for efficient and reliable results. The aim of this study is to investigate and 
optimally classify the surface condition of flexible road pavement along 60 km length of the Zaria – 
Kaduna Federal Highway in Northern Nigeria for maintenance decision. The study used data mining 
technique for the classification of pavement surface condition into good, satisfactory, fair, poor, very poor, 
serious or failed. A field survey was carried out to examine the surface area and length of various surface 
defects such as cracks, potholes, rutting and edge failure within chainages measuring 200 meters apart, 
which was used to compute the Pavement Condition Index (PCI) values and section classification in 
accordance with procedures stated in ASTM D6433. The AutoWEKA model of Waikato Environment for 
Knowledge Analysis (WEKA) software was used to optimally classify the surface condition of the highway. 
Results indicated that, 79.67% of the 300 total instances considered by the model were correctly classified 
while 20.33% of the instances were incorrectly classified. The optimum surface condition classification 
showed that worse pavement surface conditions of the sampled site were ‘Poor’, ‘Very Poor’ and ‘Failed’ at 
77 (32.22%), 51 (21.34%) and 54 (22.59%) instances respectively of the correctly classified 239 instances 
out of the 300 total instances sampled. Based on its present condition, 76.15% of the road segment was 
bad. The rehabilitation or reconstruction of the Zaria – Kaduna Federal Highway was therefore 
recommended for improved condition and optimum performance. 
 
Keywords: Zaria – Kaduna highway; data mining; pavement surface condition; optimization; WEKA 
software.  
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1.  Introduction 

In most African countries, highway transportation constitutes the major means of the 
transport system [1, 2]. This therefore requires conscious developmental strides for 
highway facilities to cater for the dire need to travel. Like other infrastructures, highway 
facilities especially the commonly used flexible road pavement, usually undergo 
continuous deterioration over time due to the impact of damaging factors such as traffic 
load, weather condition, material properties, age of pavement, original design of 
pavement structure, construction quality, road geometry and maintenance policy [2 – 5]. 
Flexible road pavement is the commonest type often used. It is an elastic type of 
pavement whose structure is made of different unbound layers of soil materials that 
exhibit nonlinear behaviour under the influence of damaging factors. The typical 
structure of a flexible pavement designed and built according to Nigeria specifications [6] 
is as shown in Fig. 1;  
 

 
 

Fig. 1 Structure of a Flexible Pavement  
 

The wearing course made of asphalt concrete is designed to carry traffic load directly, 
provide seal for the pavement structure against surface water and resist skidding [7]. The 
base and sub-base layers lay on the natural ground soil known as the subgrade. The 
massive use of flexible pavement for highway construction in most developing countries 
like Nigeria is due to its relatively cheap cost of construction and maintenance [8]. The 
performance of road pavement is usually measured on a classification scale of good to 
worse with subdivisions of; good, satisfactory, fair, poor, very poor, serious and failed 
states [9]. These classifications are a function of the severity (extent) and quantity 
(frequency) of surface defects caused by deterioration of the pavement materials. 
Common defects of flexible pavement include; cracks, potholes, ravelling, rutting, edge 
failure, shoving, swell, etc.  
 

1.1 Pavement Management Systems 
 

The practice of pavement management through performance monitoring and condition 
classification started decades ago. In 1950s, the American Association of State Highway 
and Transportation Officials (AASHTO) formerly known as American Association of State 
Highway Officials (AASHO) first carried out road test program to evaluate pavement 
conditions in America [10]. The approach used regression equations to examine 
relationship between effective variables. Several researches on pavement management 
were carried out thereafter. In recent times, pavement management systems employed 
the use of intelligent algorithms which involves data mining for condition classification 
for efficient and reliable maintenance decisions [11-13]. The use of intelligent algorithms 
in pavement surface condition classification is apt in road pavement management 
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system, since the process is characterised with inconsistencies caused by subjective 
judgment and measurement of performance variables [12-14]. Hence the need for 
optimum classification of road pavement surface condition based on damaging effects at 
different stages of the life cycle for efficient and sustainable management policy. Previous 
studies had made concerted efforts in this regard; Yin [15] used probability theorem for 
integrating instrumentation data in probabilistic performance prediction of flexible 
pavement based on condition classifications, while Mahmood [16] studied at the 
network-level, maintenance decisions for flexible pavement using a soft computing-based 
framework which classified the road network into different regions. Studies in the past 
have established that initial surface condition classification is an essential aspect of 
pavement management system using intelligent algorithms [17-24]. 
 

There are different indices used for pavement condition classification. Setyawan et al. 
[25] examined the condition of road performance and remaining service life of some 
selected road pavements using the Pavement Condition Index (PCI) which is a function of 
the surface distresses per road section to predict the remaining service life using 
deflection data obtained from a Falling Weight Deflectometer (FWD) measurements. In 
Adeke et al. [26] assessment of road pavement condition on the Federal University of 
Agriculture Makurdi Campus was carried out to present classified and quantitative facts 
to the university management board for maintenance decision. Dabous et al. [27] 
developed a probabilistic distress-based evidential reasoning method for assessing 
pavement infrastructure condition and rating as the basis for maintenance decisions and 
budget allocations. The above mentioned studies employed the use of subjective 
evaluation techniques which were prone to estimation errors, hence require advanced 
analytical techniques for data training. Most existing pavement performance prediction 
models were based on pavement surface condition classification such as; Condition 
Rating Survey (CRS) or Pavement Condition Index (PCI) and the International Roughness 
Index (IRI) methodologies among others [27]. The modelling of pavement management 
system requires classified assessment of initial pavement distress conditions as 
independent variable on a section-by-section assessment [25, 28, 29]. In most developing 
countries like Nigeria, it is usually difficult to classify pavement condition using standard 
scales such as CRS, PCI and IRI methods for performance prediction over time due to cost 
of operation, lack of machineries and operational skills. Pavement management system 
generally requires large data on all the influencing factors which is usually expensive in 
terms of cost and time [3, 30]. Salpisoth [31] identified major challenges in road 
pavement management system to include; the ability to carry out routine monitoring and 
evaluation of pavement condition regularly with limited budget and expertise; and how 
to predict pavement performance using appropriate models based on incomplete data for 
optimum maintenance and repair decisions. Arifuzzaman et al. [32] used the predictive 
modelling and machine learning technique also known as the classification and 
regression tree (CART) method to predict the behaviour of adhesive properties of 
modified asphalt subjected to oxidation. The approach showed more explanatory 
relationship between the input variables at a nanoscale. The use of data science and 
machine learning techniques have become the most efficient and reliable methods for 
analysing data generated from systems behaviour for information and knowledge 
discovery [12, 33-35].  
 
1.2 The Concept of Data Mining 

 

Data mining is a technique of machining learning which is capable of using some 
algorithms to discover deep and hidden relationships between variables in a given 
dataset based on its elements and attributes [14, 35, 36]. It is suitable for numeric 
analysis of systems characterised by noise and incomplete or missing data for 
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classification and mapping to reason and discovering relationship between variables in a 
dataset [14, 37 – 39, 40]. Data mining uses non-generative, black-box models or 
exploratory techniques to examine variables that define systems behavior [41]. It is used 
for system classification and performance prediction to aid categorical understanding of 
systems behaviour [12, 14]. Classification in data mining simply means the grouping of 
individual items or entries into common groups based on characteristic similarities as 
relates to specific groups using a known technique or classifier [42]. The use of data 
mining techniques has been commended by previous studies due to its successes in 
diverse fields of research; Araujo et al., [43] used data mining for the estimation of energy 
consumption on the tire-pavement interaction for asphalt mixtures with different surface 
properties. Also, Luca et al. [44] used the data mining approach on friction data to 
investigate runway pavement friction decay at the International Civil Airport of Lamezia 
Terme, Italy. These studies all stated the suitability and efficiency of data mining 
technique for describing system behaviour based on condition classification.  
 
1.3 The AutoWEKA Model 

 

Data classification and many other methods of data mining can be implemented in the 
Waikato Environment for Knowledge Analysis (WEKA) software. It is a machine learning 
and data mining toolkit developed at the Waikato University, New Zealand. It is an open 
source software written in Java programming language, used for research and project 
works [40, 45]. The software is capable of carrying out data mining in the form of pre-
processing, data classification, visualisation, association, clustering and filtering [35, 46]. 
Algorithmic models used by WEKA for behavioural classification and performance 
predictions of systems include the Naïve Bayes, Decision Tree, Random forest, etc. [40]. 
When the most suitable classifer or regression model in terms of performance and 
parameterism among the aforementioned is required, the Automatic WEKA (AutoWEKA) 
command is used. Its major function is to peruse the dataset and select the optimum 
model and hyperparameters for system analysis [35]. Not much of AutoWEKA 
applications are found in previous researches especially in pavement management, its 
theoretical function and strength motivated this study. Methodologies based on 
intelligent algorithms employed by previous studies for data classification yielded 
reliable results [14, 47 - 49]  
  
The aim of this study therefore, is to investigate surface condition classification of flexible 
road pavement using intelligent algorithms. Objective of the study is to optimally classify 
surface condition of the Zaria – Kaduna Federal Highway using data mining technique 
implemented in WEKA software.  
 

2.  Methodology  
 

2.1  Description of Study Area 
 

A measure of road segments along the Zaria - Kaduna Federal Highway was examined by 
this study. The route length considered measured 60 km from Zaria - Kaduna towns. The 
site is located within the North-West region of Nigeria. It is the major route connecting 
the North-Central and North-West regions of Nigeria running through Kaduna State.  A 
map of Nigeria showing the proposed site by its Average Daily Traffic flow is as presented 
in Fig. 2; 
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Fig. 2 Road Network and ADT in Nigeria [4] 
 

2.2  Data Collection and Analysis 
 

The study involved an assessment and classification of pavement condition along the 
Zaria – Kaduna Federal Highway using empirical dataset based on procedures stated in 
Road Sector Development Team [4] and ASTM D6433 [9]. The process involved 
measurement of geometric features of pavement defects along the 60 km length of the 
Federal Highway. Measuring instruments used for the field work included, steel tape, 
range rod, plastic ruler and safety kits. The route length was divided into equal chainages 
measuring 200 meters. Based on their relatively obvious occurrence, types of defects 
considered and methods of measuring affected surface area and level of severity were as 
presented below; 
 

Pothole: this is a bowl-shaped depression on the pavement surface with sharp edges and 
vertical or inclined sides as a result of propagation of alligator cracking promoted by the 
presence of surface water and impulse of wheel load. Features of a typical pothole are as 
shown in Fig. 3. Plate A1 presents a pothole and method of measuring its severity levels 
are as shown in Plates A2 and A3. The impact of potholes to PCI is measured based on the 
quantity of potholes within a road segment counted according to their respective levels of 
severity. 
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Fig. 3 Pothole and Measurement of Severity Level 
 
 
 

 
Categories of severity levels measured as a function of the mean depth of pothole are as 
presented in Table 1; 
 
Table 1 Level of Severity for Potholes [9] 
 

Maximum Depth of 
Pothole (mm) 

Average Diameter (mm) 
100 to 200 200 to 450 450 to 750 

13 to ≤ 25 Low Low Medium 
> 25 and ≤ 50 Low Medium High 

> 50 Medium Medium High 
 
Rutting: this is a surface depression along the line of traffic load (wheel path) due to 
permanent deformation in any pavement layer or the subgrade caused by consolidation 
of materials. A typical rut and its features are as shown in Fig. 4. Ruting is measured in 
square meters of the distressed surface area shown in Plate B1. Its levels of severity are 
the effective length and the mean depth of the rut as shown in Plates B2 and B3 
respectively. The severity levels for Low, medium and high are measured as the mean rut 
depth on a scale of 6 to 13 mm, 13 to 25 mm and > 25 mm respectively. 
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Fig. 4 Rutting and Measurement of Severity Level 

 
Edge Failure: also known as edge cracking are edge cracks which run parallel to, and 
usually measured within 0.3 to 0.5 m length of the outer edge of the road pavement. 
Essentails details of an edge failure defect used for this study are as shown in Fig. 5. It is 
usually caused by traffic loading and weak subsoil layers. The impact of edge failure as 
shown in Plate C1 is measured along linear distance in meters as shown in Plate C2 and 
the severity levels depend on the quantity of breakup, cracks and ravelling.   
 

  

Fig. 5 Edge Failure and Measurement of Severity Level 

 
Cracks: this refers to the alligator or fatigue crack which is a series of interconnected 
cracks caused by fatigue failure of the pavement surface due to repeated traffic loading as 
shown in Plate D1. Its effect is measured in square meters of the affected surface area and 
the level of severity is based on crack sizes which range from; fine and parallel 
longitudinal hairlines cracks with few interconnections for the low severity level, to light 
network of alligator cracks that are lightly spalled for the medium level and well defined 
network of cracks with spalled at the edges for the high level, measured within a square 
area as shown in Plate D2;   
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Fig. 6 Cracks and Measurement of Severity Level 

Data obtained from the field survey were collated into a spreadsheet package – Microsoft 
Excel and procedures stated in ASTM D6433 [9] manual were followed chronologically to 
classify the pavement condition. The summary of the procedure used for computing 
Pavement Condition Index (PCI) for condition classification of the road pavement were as 
follows; 
Step 1:  Carry out a classified collation of various defects according to suitable format 

(square meter area or meter length) at respective levels of severity in a 
spreadsheet specially designed for the purpose. 

 

Step 2:  Sum up the total quantity of each distress type at each distress severity level 
and record as the total severity 

 

Step 3: Determine the density of each distress type at each severity level in every 
road segment using Equation 1; 

 

                       
                 

                      
                                          (1) 

 

Step 4: Determine the deduct value for each distress type and severity level 
combination from the distress deduct value curves from the manaual.  

 

Step 5: Determine the maximum corrected deduct value using the following 
procedure; if none or only one individual deduct value is greater than 2.0, 
use the total value in place of the maximum Corrected Deduct Value (CDV) in 
determining the PCI; otherwise, maximum CDV should be determined using 
the following procedure;  

 

a) List the individual deduct values in descending order 
b) Determine the allowable number of deducts using suitable curve from 

the manual or Equation 2;  
 

         ⁄                                                                             (2) 
 

where,   is the allowable number of deducts including fractions (which 
must be less than or equal to 10.0) and HDV is the Highest Individual 
Deduct value. 

c) Reduce the number of individual deduct values to the m largest deduct 
values including fractional part. If less than m deduct values are 
available, use all the deduct values. 

d) Determine the maximum CDV iteratively from the manual  
e) Determine the total deduct value by summing individual deduct values 
f) Determine q as the number of deducts with a value greater than 2.0 
g) Determine the CDV from total deduct value and q by looking up the 

appropriate correction curve from the manual for Asphalt concrete 
pavement   



Adeke et. al / Usak University Journal of Engineering Sciences 2020, 3(2): 73-89 

 

81 
 

h) Reduce the smallest individual deduct value greater than 2.0 to 2.0 and 
repeat e), f) and g) until q = 1 

i) Maximum CDV is the largest of the CDVs.  
 

Step 6: Compute PCI value by subtracting the maximum CDV from 100. 
 

Step 7: Classify the PCI value of each road segment using Table 2; 

Table 2 Scale for Pavement Condition Classification [9] 
 

Pavement Surface Condition PCI 
Good 86 – 100 
Satisfactory 71 – 85 
Fair 56 – 70 
Poor 41 – 55 
Very poor 26 – 40 
Serious 11 – 25 
Failed 0 – 10 

 
2.3  Optimisation of Pavement Surface Condition Classification 
 

The original file saved in column-separated values (.csv) format contained values for 
variables entered in the file such that; rows represent instances, columns were for 
defined attributes per segment such as density of cracks, potholes, rutting and edge 
failure with the last column representing the targeted attribute or outcome of pavement 
condition classification – good, satisfactory, fair, poor, very poor, serious and failed. All 
variables entered were defined into strings, numeric and nominal values. Using the 
pavement surface condition classifications scale, surface condition of the road length was 
classified along chainages as shown in Table 3; 
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Table 3(a) Classification of Pavement Surface Condition 

Chainage (m) PCI 
Condition 
Classification 

CH 000+000 - - 
CH 000+200 61 Fair 
CH 000+400 57 Fair 
CH 000+600 50 Poor 
CH 000+800 47 Poor 
CH 001+000 66 Fair 
CH 001+200 58 Fair 
CH 001+400 69 Fair 
CH 001+600 70 Fair 
CH 001+800 80 Satisfactory 
CH 002+000 68 Fair 
CH 002+200 81 Satisfactory 
CH 002+400 45 Poor 
CH 002+600 72 Satisfactory 
CH 002+800 77 Satisfactory 
CH 003+000 83 Satisfactory 
CH 003+200 42 Poor 
CH 003+400 52 Poor 
CH 003+600 74 Satisfactory 
CH 003+800 85 Satisfactory 
CH 004+000 59 Fair 
CH 004+200 73 Satisfactory 
CH 004+400 75 Satisfactory 
CH 004+600 66 Fair 
CH 004+800 84 Satisfactory 
CH 005+000 56 Fair 
CH 005+200 67 Fair 
CH 005+400 71 Satisfactory 
CH 005+600 44 Poor 
CH 005+800 65 Fair 
CH 006+000 77 Satisfactory 
CH 006+200 73 Satisfactory 
CH 006+400 44 Poor 
CH 006+600 75 Satisfactory 
CH 006+800 59 Fair 
CH 007+000 68 Fair 
CH 007+200 76 Satisfactory 
CH 007+400 79 Satisfactory 
CH 007+600 88 Good 
CH 007+800 92 Good 
CH 008+000 80 Satisfactory 
CH 008+200 77 Satisfactory 
CH 008+400 82 Satisfactory 
CH 008+600 80 Satisfactory 
CH 008+800 72 Satisfactory 
CH 009+000 76 Satisfactory 
CH 009+200 71 Satisfactory 
CH 009+400 69 Fair 
CH 009+600 84 Satisfactory 
CH 009+800 65 Fair 
CH 010+000 55 Poor 
CH 010+200 36 Very Poor 
CH 010+400 57 Fair 
CH 010+600 21 Serious 
CH 010+800 40 Very Poor 

 

Chainage (m) PCI 
Condition 
Classification 

CH 011+000 30 Very Poor 
CH 011+200 9 Failed 
CH 011+400 35 Very Poor 
CH 011+600 7 Failed 
CH 011+800 6 Failed 
CH 012+000 4 Failed 
CH 012+200 9 Failed 
CH 012+400 10 Failed 
CH 012+600 3 Failed 
CH 012+800 45 Poor 
CH 013+000 10 Failed 
CH 013+200 17 Serious 
CH 013+400 6 Failed 
CH 013+600 37 Very Poor 
CH 013+800 40 Very Poor 
CH 014+000 28 Very Poor 
CH 014+200 41 Poor 
CH 014+400 7 Failed 
CH 014+600 40 Very Poor 
CH 014+800 54 Poor 
CH 015+000 50 Poor 
CH 015+200 10 Failed 
CH 015+400 6 Failed 
CH 015+600 5 Failed 
CH 015+800 29 Very Poor 
CH 016+000 50 Poor 
CH 016+200 30 Very Poor 
CH 016+400 32 Very Poor 
CH 016+600 41 Poor 
CH 016+800 38 Very Poor 
CH 017+000 67 Fair 
CH 017+200 27 Very Poor 
CH 017+400 37 Very Poor 
CH 017+600 55 Poor 
CH 017+800 54 Poor 
CH 018+000 8 Failed 
CH 018+200 43 Poor 
CH 018+400 69 Fair 
CH 018+600 58 Fair 
CH 018+800 55 Poor 
CH 019+000 50 Poor 
CH 019+200 48 Poor 
CH 019+400 49 Poor 
CH 019+600 55 Poor 
CH 019+800 40 Very Poor 
CH 020+000 2 Failed 
CH 020+200 36 Very Poor 
CH 020+400 44 Poor 
CH 020+600 7 Failed 
CH 020+800 28 Very Poor 
CH 021+000 8 Failed 
CH 021+200 3 Failed 
CH 021+400 6 Failed 
CH 021+600 15 Serious 
CH 021+800 10 Failed 
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Table 3(b) Classification of Pavement Surface Condition Continued 

Chainage (m) PCI 
Condition 
Classification 

CH 022+000 20 Serious 
CH 022+200 10 Failed 
CH 022+400 7 Failed 
CH 022+600 8 Failed 
CH 022+800 5 Failed 
CH 022+000 1 Failed 
CH 023+200 9 Failed 
CH 023+400 41 Poor 
CH 023+600 28 Very Poor 
CH 023+800 20 Serious 
CH 023+000 23 Serious 
CH 024+200 44 Poor 
CH 024+400 49 Poor 
CH 024+600 50 Poor 
CH 024+800 5 Failed 
CH 024+000 8 Failed 
CH 025+200 27 Very Poor 
CH 025+400 45 Poor 
CH 025+600 55 Poor 
CH 025+800 60 Fair 
CH 026+000 33 Very Poor 
CH 026+200 30 Very Poor 
CH 026+400 1 Failed 
CH 026+600 45 Poor 
CH 026+800 55 Poor 
CH 027+000 20 Serious 
CH 027+200 23 Serious 
CH 027+400 47 Poor 
CH 027+600 8 Failed 
CH 027+800 5 Failed 
CH 027+000 4 Failed 
CH 028+200 40 Very Poor 
CH 028+400 36 Very Poor 
CH 028+600 29 Very Poor 
CH 028+800 50 Poor 
CH 028+000 37 Very Poor 
CH 029+200 5 Failed 
CH 029+400 7 Failed 
CH 029+600 2 Failed 
CH 029+800 30 Very Poor 
CH 030+000 7 Failed 
CH 030+200 26 Very Poor 
CH 030+400 10 Failed 
CH 030+600 15 Serious 
CH 030+800 1 Failed 
CH 031+000 3 Failed 
CH 031+200 5 Failed 
CH 031+400 3 Failed 
CH 031+600 29 Very Poor 
CH 031+800 30 Very Poor 
CH 032+000 35 Very Poor 
CH 032+200 30 Very Poor 
CH 032+400 25 Serious 
CH 032+600 1 Failed 
CH 032+800 26 Very Poor 

 

Chainage (m) PCI 
Condition 
Classification 

CH 033+000 26 Very Poor 
CH 033+200 0 Failed 
CH 033+400 55 Poor 
CH 033+600 15 Serious 
CH 033+800 7 Failed 
CH 034+000 2 Failed 
CH 034+200 6 Failed 
CH 034+400 0 Failed 
CH 034+600 5 Failed 
CH 034+800 7 Failed 
CH 035+000 8 Failed 
CH 035+200 10 Failed 
CH 035+400 0 Failed 
CH 035+600 20 Serious 
CH 035+800 7 Failed 
CH 036+000 50 Poor 
CH 036+200 35 Very Poor 
CH 036+400 55 Poor 
CH 036+600 46 Poor 
CH 036+800 49 Poor 
CH 037+000 33 Very Poor 
CH 037+200 67 Fair 
CH 037+400 21 Serious 
CH 037+600 0 Failed 
CH 037+800 22 Serious 
CH 038+000 50 Poor 
CH 038+200 8 Failed 
CH 038+400 37 Very Poor 
CH 038+600 35 Very Poor 
CH 038+800 26 Very Poor 
CH 039+000 29 Very Poor 
CH 039+200 45 Poor 
CH 039+400 48 Poor 
CH 039+600 54 Poor 
CH 039+800 33 Very Poor 
CH 040+000 55 Poor 
CH 040+200 54 Poor 
CH 040+400 55 Poor 
CH 040+600 40 Very Poor 
CH 040+800 45 Poor 
CH 041+000 38 Very Poor 
CH 041+200 36 Very Poor 
CH 041+400 50 Poor 
CH 041+600 38 Very Poor 
CH 041+800 77 Satisfactory 
CH 042+000 80 Satisfactory 
CH 042+200 54 Poor 
CH 042+400 55 Poor 
CH 042+600 65 Fair 
CH 042+800 54 Poor 
CH 043+000 47 Poor 
CH 043+200 71 Satisfactory 
CH 043+400 59 Fair 
CH 043+600 55 Poor 
CH 043+800 49 Poor 
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Table 3(c) Classification of Pavement Surface Condition Continued 

Chainage (m) PCI 
Condition 
Classification 

CH 044+000 2 Failed 
CH 044+200 5 Failed 
CH 044+400 46 Poor 
CH 044+600 66 Fair 
CH 044+800 34 Very Poor 
CH 045+000 47 Poor 
CH 045+200 18 Serious 
CH 045+400 6 Failed 
CH 045+600 34 Very Poor 
CH 045+800 50 Poor 
CH 046+000 34 Very Poor 
CH 046+200 40 Very Poor 
CH 046+400 50 Poor 
CH 046+600 32 Very Poor 
CH 046+800 50 Poor 
CH 047+000 34 Very Poor 
CH 047+200 54 Poor 
CH 047+400 8 Failed 
CH 047+600 10 Failed 
CH 047+800 2 Failed 
CH 048+000 38 Very Poor 
CH 048+200 40 Very Poor 
CH 048+400 47 Poor 
CH 048+600 50 Poor 
CH 048+800 55 Poor 
CH 049+000 49 Poor 
CH 049+200 60 Fair 
CH 049+400 44 Poor 
CH 049+600 7 Failed 
CH 049+800 58 Fair 
CH 050+000 50 Poor 
CH 050+200 54 Poor 
CH 050+400 27 Very Poor 
CH 050+600 43 Poor 
CH 050+800 27 Very Poor 
CH 051+000 41 Poor 
CH 051+200 56 Fair 
CH 051+400 48 Poor 
CH 051+600 70 Fair 
CH 051+800 37 Very Poor 

 

Chainage (m) PCI 
Condition 
Classification 

CH 052+000 41 Poor 
CH 052+200 55 Poor 
CH 052+400 39 Poor 
CH 052+600 85 Satisfactory 
CH 052+800 70 Fair 
CH 053+000 44 Poor 
CH 053+200 53 Poor 
CH 053+400 40 Very Poor 
CH 053+600 55 Poor 
CH 053+800 48 Poor 
CH 054+000 41 Poor 
CH 054+200 46 Poor 
CH 054+400 55 Poor 
CH 054+600 50 Poor 
CH 054+800 55 Poor 
CH 055+000 36 Very Poor 
CH 055+200 40 Very Poor 
CH 055+400 40 Very Poor 
CH 055+600 49 Poor 
CH 055+800 37 Very Poor 
CH 056+000 55 Poor 
CH 056+200 26 Very Poor 
CH 056+400 5 Failed 
CH 056+600 25 Serious 
CH 056+800 41 Poor 
CH 057+000 10 Failed 
CH 057+200 40 Very Poor 
CH 057+400 28 Very Poor 
CH 057+600 26 Very Poor 
CH 057+800 36 Very Poor 
CH 058+000 40 Very Poor 
CH 058+200 39 Very Poor 
CH 058+400 55 Poor 
CH 058+600 11 Serious 
CH 058+800 2 Failed 
CH 059+000 27 Very Poor 
CH 059+200 10 Failed 
CH 059+400 40 Very Poor 
CH 059+600 36 Very Poor 
CH 059+800 25 Serious 

 

 
Results from Table 3 (a) to (c) were collated into an excel spreadsheet file. The file was 
then imported into WEKA Explorer in the form of an Attribute-Relation File Format 
(ARFF) for analysis. The AutoWEKA classifier model was used for optimally training the 
dataset. İt is an automatic model used for selection and hyper-parameter optimization in 
the WEKA software. Classifications obtained from the analysis were optimally 
implemented using the WEKA software to derive an optimum distribution of flexible road 
pavement surface condition classification in the investigation.  

3.  Results and Discussion 
 

The summary of results obtained from simulation of the AutoWEKA model using 
pavement surface condition classification data is as presented in Fig. 7; 
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Fig. 7 Model Performance 
 

Fig. 7 presented results of an optimised model of the algorithm. It revealed that 76.67% 
of the 300 total instances or entries considered by the model were correctly classified 
into good, satisfactory, fair, poor, very poor, serious and failed; while 20.33% of the 
instances were incorrectly classified. This implied that majority of the instances were 
fittingly classified into the defined classifications of attributes. The Kappa statistics also 
defined as the coefficient of correlation of the optimized model was 0.742. In spite of the 
significant Relative Absolute Error (RAE) of 28.1792% and Root Relative Square Error 
(RRSE) of 53.1521% caused by the incorrectly classified pavement conditions, the Kappa 
statistics value is approaching unity which explains a relatively strong relationship 
among the independent and the dependent variables of the optimised classification 
model. The relatively low value of the mean absolute error 0.0561 indicates high 
accuracy of the prediction outcome. Also, the significant values of True Positive (TP) rates 
against the False Positive (FP) predictions for the various instances indicate high level of 
prediction accuracy. The high degree of precision, recall and F-score (F-measure) values 
further justify the agreement that classification by this AutoWEKA model is within a 
tolerable error.  
 

Another important results that further explained the characteristics of the surface 
condition classification model for flexible road pavement is as presented in Fig. 8; 
 

 
 

Fig. 8 Confusion Matrix 
 

Fig. 8 presented the confusion matrix. The diagonal of this matrix explains the share of all 
correctly classified attributes used for the classification of pavement defects on the site, 
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while other entries on the matrix represent the unexplained or incorrectly classified 
outputs. It can also be deduced from Fig. 8 that, the overall or optimum classification of 
pavement condition on the site was ‘Poor’ as indicated by its relatively high density value 
of 77 (32.22%) instances. The ‘failed and very poor’ pavement conditions of segments 
also recorded relatively significant values of 54 (22.59%) and 51 (21.34%) instances 
respectively. This indicated that a significant portion of the highway segments (76.15%) 
is undergoing rapid and continuous deterioration which actually tends to total failure as 
anticipated, hence calls for quick maintenance intervention by rehabilitation or 
reconstruction. 
 

4. Conclusion 
 

Due to the relevance of initial surface condition classification of road pavement in 
performance management system, this study attempted to investigate and optimally 
classify pavement surface condition along the Zaria – Kaduna Federal Highway in 
Northern Nigeria using data mining technique. Procedures stated in ASTM D6433 manual 
were used for data collection, while the AutoWEKA model of WEKA software was used 
for data analysis. Results indicated that the optimum classification of the flexible road 
pavement was ‘Poor’ at 77 (32.22%) instances. Other significant classifications were 
‘Very Poor’ and ‘Failed’ conditions at 51 (21.34%) and 54 (22.59%) instances 
respectively of the correctly classified 239 instances out of the 300 total instances 
considered. With this high proportion of poor road segments, the rehabilitation or 
reconstruction of the Zaria – Kaduna Federal Highway was recommended to improve its 
present condition.  
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