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Abstract 

The study is geographically focused on the Manila Trench, located in the west Pacific Ocean, South 

China Sea, west Philippines. The research aims at the geological mapping, analysis and visualizing 

variations in the submarine geomorphology of the Manila Trench. Technically, the work was done using 

Generic Mapping Tools scripting toolset (GMT). A combination of various GMT modules was applied 

for geospatial modelling. Methodology includes cartographic data integration and interpretation through 

approaches of data analysis: topographic plotting, geophysical modelling, geological mapping and 

statistical analysis. The data included SRTM, ETOPO1, geoid and gravity grids (CryoSat-2, Jason-1). 

Two sets of the cross-section profiles of the trench were automatically digitized. The profile transects 

were compared and differences in the geomorphic shape in southern and northern parts revealed. 

Southern part has steeper slope on the western part. Northern part is steeper on the continental slope 

part. The submarine terraces are located on the northern segment at depths -2,000 m. The depth and 

geomorphology of the slope vary for the range -3,500 to -4,500 m: minimals for the northern part with 

526 samples (18.2%) for the depths -4,000 to -4,200 m. The histogram for the northern part has bimodal 

distribution with two peaks. The southern part shows 142 values for the minimals -3,500 to -3400 m. 

The statistical analyses revealed that northern part of the trench is deeper. The GMT functionality shown 

in this paper enabled integration and interpretation of the multi-source data: automatically digitized 

profiles, geological mapping, 2D and 3D bathymetric modelling, statistical analysis, mathematical 

approximation of the trend modelling. The GMT proved to be capable of visualizing geodata that can 

significantly improve Earth studies and interpretation of submarine geomorphology of the oceanic 

trenches through the advanced data analysis. 
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1. INTRODUCTION 

Understanding a variety of the submarine landforms hidden from the human eyes due to their remote 

location, and factors affecting seafloor geomorphology, is a very complex task that requires a multi-

disciplinary approach: geological data analysis, data processing and modelling by advanced algorithms, 

geostatistical analysis and visualization. The asymmetry of the deep-sea trenches reflects a phenomenon 

of tectonic plates subduction. Thus, as one plate bends down to the Earth’s mantle, another plate is being 

deformed filling the growing empty space. The depths of trenches are influenced by many processes 

and factors controlling their actual shape and structure. Many attempts were undertaken to map and 

visualize general form of the submarine geomorphology and model oceanic deep-sea trenches. Rapid 

development of the IT technologies in XXI century facilitated geodata processing which contributes to 

our better understanding of the marine geomorphology. 

The significance of the research presented in this paper is associated with the presented approach of 

GMT as an advanced toolset among geoinformation GIS technologies applied for geological mapping 

and geomorphic analysis. Having access to the machine learning technologies associated with rapid 

recent IT progress (scripting coding, geospatial datasets and DEMs), data analysis offered by GMT can 

be employed for marine geological research to provide new, more detailed insight into the seafloor 

bathymetry. Presented GMT codes enable to perform a speed yet quality mapmaking and data 

processing. In turn, this allows to study in details submarine geomorphic landforms of the oceanic 

seafloor. In turn, this allows an in-depth study of the Manila Trench. 

The contribution of this research towards development of the methodologies of seafloor mapping and 

modelling geodata by GMT consists in the presented and explained GMT scripting codes and snippet. 

Rather than traditional GIS interface, a GMT is fully based on the scripting approach where cartographic 

methodology consists in executing the programming code which results in mapping. Geoinformation is 

crucial for understanding ocean seafloor and precise bathymetric mapping. Combining datasets of the 

raster maps with geomorphic modelling increases our knowledge of the factors affecting seafloor 

landforms.  

The research aim is comparative geomorphic analysis of deep-sea oceanic trench: Manila Trench located 

in the geologically complex region of the western part of the Pacific Ocean, a part of the ’Ring of Fire’ 

where active movements of the tectonic plates and volcanism take place. Complex geophysical settings 

affect the formation of the trench, high seismicity and geodynamic instability visualized on the thematic 

maps of geological and tectonic settings as the most important causes of the ocean trench formation. 

Cartographic objective of the research was to visualize bathymetry, geomorphology, tectonic and 

geological settings of the trenches through 2D and 3D modelling and mapping. The statistical analysis 

aimed to compare datasets of the trench and show differences in geomorphic and bathymetric structure.  
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2. STUDY AREA AND MATERIALS 

The study geographically focuses on the Manila Trench, an oceanic trench located in the South China 

Sea, west Pacific Ocean, west of the islands of Luzon and Mindoro in the Philippines (Fig. 1). 

The study presents geomorphic mapping and the use of data models of various spatial resolution to 

visualize certain geophysical behaviors of the crust in the region. The area of the Manila Trench is 

located in the Manila subduction zone at the Philippine Sea plate boundary where it moves in the 

northwest direction toward the Eurasian plate with a high convergence rate [1]. 

 

 
Figure 1. Bathymetric map of the study area based on the SRTM 15 sec grid. Image source: author, made using 

GMT. Applied color palette: ‘geo.cpt’ by GMT, with colors adjusted for global bathymetry/topography 

relief [R=-8000/8000, H=0, C=RGB]. SRTM15_PLUS is a unique dataset, introduced in 2019 from the 

SRTM mission. Publicly available SRTM15_PLUS dataset was used in the current research. Hence, the 

base map for this study is a high resolution (15 arc second) raster grid: a data fusion, SRTM15_PLUS 

combining SRTM and other models for land and other datasets for bathymetry. Image source: author, 

made using GMT. 

 
The Manila Trench with its maximal depth of 5,400 m [2] stretches in almost vertical North-South 

direction. It is created by the subduction of the Eurasian Plate (through its part Sunda Plate) under the 

Philippine Sea Plate. Specific geological structure of the Manila Trench causes potential repetitive 
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earthquakes [3]. Another frequent hazard caused by the subducting slab of the Eurasian plate beneath 

the Manila Trench (Fig. 2) is destructive tsunamis causing catastrophic damages in the source area and 

along the coastlines of the Luzon Island.  

 

Figure 2. Geologic map of the Manila Trench based on the ETOPO1 1 min grid. Geologic map of the PSB. Solid 

red circles indicate active volcanoes in the study region. Yellow fronts denote trench axes (Manila 

Trench). Tectonic slab contours are depicted by the orange lines. Color palette is visualized by ‘globe.cpt’ 

embedded in GMT with following specifications: Colors for global bathymetry/topography relief [R=-

10000/10000, H=0, C=RGB]. Image source: author, made using GMT. 

 

The hypocenters of the tsunami of the Manila Trench are located at the depths <100 km [4]. 

The tsunami hazard from the Manila Trench source has been assessed in more details in several 

research papers [5-7]. The zone of the Eurasian Plate subduction explains the belt of volcanoes 

in the Manila Trench area (Fig. 2), on the west side of the Philippine island of Luzon. The area 

between the northernmost Manila subduction zone and southern Taiwan is considered a 
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transition from the subduction to initial collision, and a weakly coupled nature for the northern 

part of the Manila Trench [8]. 

 
Figure 3. Model of the geoid along the of the Manila Trench. Density variations of the Earth’s interior cause geoid 

undulations. Because the structure and submarine geomorphology of the ocean trench is affected by Earth’s 

interior through tectonic plates subduction and movements, the visual shape of the geoid is distinctly 

repeating the isolines, as shown on image above. Image source: author, made using GMT. 

 

Submarine regions, in contrast with the terrestrial ones, still remain the least accessible areas 

on the Earth due to their remote location. Therefore, modelling oceanic trenches is one of the 

most complicated issues in the marine geology explained by their inaccessibility. Oceanic 

trenches can only be studied using computer based modelling, advanced mapping and 

algorithms of the data analysis. 

Therefore, using special software and tools designed for geospatial data modelling enables to 

get an insight into the deepest regions of the ocean and to visualize areas with the most difficult 

access [9]. 
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Figure 4. Model of the gravimetry along the of the Manila Trench. The accuracy of the marine gravity measurements 

is important for reliable results and refines approximation of the models with Earth ellipsoid. Gradient 

changes in gravity anomalies have visual correlations with geoid as caused by the indirect effects of the 

geoid undulations. Hence, visualized image of the gravity is reflected by the structure and submarine 

geomorphology of the trench affected by plates subduction. Image source: author, made using GMT. 
 

The morphology of the seafloor is caused by the uneven distribution of the elevations on the 

Earth with distinctly uneven hypsography. Thus, the majority of the depths on the Earth is 

occupied by the deep basins (ca. 4–6.5 km), while relatively few areas are covered by the 

shallow zones [10].  

The tectonic plate boundaries are the hotspot areas where the most of the largest earthquakes 

take place and oceanic slabs descend beneath the continental lithosphere causing trench 

migration [11]. The largest earthquakes mostly occur in the shallow part of the subduction zones 

[12]. The earthquakes are sometimes accompanied by strong tsunami waves. Slab dynamics is 

one of the most important drivers for the trench formation, dynamics and migration [13]. Many 

factors affect speed and direction of the trench migration. These include plate-mantle coupling, 

slab interactions with the mantle transition, plate geometry, kinematics, strain rate, temperature, 
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fluid pressure, deformation mechanisms, as well as mantle rheology [14]. The geological 

complexity of the Manila Trench is also expressed by the connection with the Philippine Trench 

where a horizontal mantle flow exists between the Manila Trench and the Philippine Trench. It 

is caused by the collision between the Palawan block and the Philippine Mobile Belt, and 

movement of the South China Sea slab [15]. Various factors cause the formation of the Manila 

Trench.  

 
Figure 5. 3D map of the Manila Trench visualizing geomorphology. A detailed 3D mesh plot on top of the 2D geoid 

contour image as a block diagram was created as a combination of bathymetric and geoid image. 3D 

bathymetry model shows selected segment of the Manila Trench to the west of the trench. The margin is 

characterized by steep slope adjacent close to the Luzon Island. Image source: author, made using GMT. 

 

Being an oceanic trench, it presents a special area of the ocean seafloor with distinct 

geomorphological structures characterized by the notable depths and steep gradient angles, 

located in the zones of the continental margin tectonic plates bending [16]. The convergence 

between the two plates forming the Manila Trench is roughly northwestward. There is a high-
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velocity zone present in the crust and upper mantle beneath the Luzon arc where the Manila 

Trench is stretching [17].  

 
Figure 6. Transect of the cross-section profiles digitized along the of the Manila Trench. Cross-sectional transects 

of the Manila Trench were taken in the central and southern regions of the trench, through key features 

such as deep valley, slopes, moraines, South China Sea basin, and adjacent shelf area. The selected cpt 

color palette include ‘terra.cpt’ colors for global bathymetry/topography relief [R=-7000/7000, H=0, 

C=RGB]. Image source: author, made using GMT. 

 

All these factors briefly mentioned to illustrate the tectonic settings of the study area indicate 

high frequency of earthquakes and special tectonic zone where the Manila Trench has been 

formed. The seafloor of the deep-sea trench presents a complex structure combined of various 

landforms: mid-ocean ridges, transform faults, ocean plains complicated by chains of 
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seamounts, minor ridges, trenches and plateaus [18]. Factors influencing geomorphic 

development, structure and bathymetric patterns of the trench are diverse. To mention some of 

them: geological, hydro-chemical, geothermal, climatic, tectonic and bathymetric determinants 

[19]. The steepness of the Manila geomorphology varies: the dip angles along the Manila 

Trench increasing gradually southwards from ca. 25° at the latitudes between 18° and 21° N, 

32° at the latitude 17° N, and nearly vertical at the latitude 14° N [20]. The tectonic front of the 

Manila Trench continuing northward into the frontal thrust faults in the western Taiwan shows 

active plate boundary between the Eurasian and Philippine Sea plates in the Luzon-Taiwan 

region [21]. 

 
Figure 7. Histograms of the bathymetry of the two selected segments of the Manila Trench. The statistical 

histograms showing frequency of data distribution for the transecting profiles of the Manila Trench 

bordering the South China Sea basin are visualized on the figure above. The shape of the histogram varies 

by the two segments of the trench reflecting their geomorphology. Image source: author, made using 

GMT. 

 

The structure of the northern Manila Trench has been studied in various papers focused on the 

problems of crustal structure and deformation in the north of the Manila Trench [22-24]. Among 
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other findings, the increasing dip angle of the Manila Trench from north to south has been 

discovered. The Manila trench loses its surface roughness in the early collision zone and 

gradually becomes a less well-defined deformation front [25]. However, the comparative 

analysis of its southern and northern parts is still missing. Therefore, current paper contributes 

to better understanding of the Manila Trench by comparative analysis of its geomorphology in 

the northern and southern segments. The data used in the current study included SRTM, 

ETOPO1, geoid and gravity grids (CryoSat-2, Jason-1). Topographic data used in this research 

include ETOPO1 Global Relief Model grid containing elevation data (topography/bathymetry) 

for the Earth. 

3. METHODOLOGY 

Data analysis applied for marine geology may be supported by programming languages, e.g. R 

[26], Octave, AWK [27], statistical libraries, e.g. Gretl [28] and other advanced tools, such as 

statistical software, e.g. SPSS [29]. For this study, a Generic Mapping Tool (GMT) scripting 

toolset [30] was selected as a main tool. It enabled to perform all the steps of the research: data 

analysis, modelling, mapping and statistical analysis and visualization. The functionality of the 

GMT and its powerful cartographic possibilities explain the choice for the GMT. The use of 

the GMT specifically for the Manila Trench was presented as mapping in various works, e.g. 

[31]. Examples of other advanced tools for geological data analysis include PHASER 

diffractometer, direct observations received from the Research Vessel (R/V) cruises, 

observations from Digital Elevation Models (DEM) [32]. The mapping was based on the 

available data sets embedded in the GMT [33] as well as Shuttle Radar Topographic Mission 

(SRTM) data [34-35]. The geologic characteristics was performed by modelling seafloor 

geomorphology, mapping tectonic slabs and submarine volcanoes.  

The geoid gravitational regional modeling was done through the GMT modules ‘psbasemap’, 

‘grdcontour’ and ‘grdimage’. Plotting contours of the terrestrial and water areas, geoid and 

bathymetry, net grids and basic cartographic elements such as titles, scales, annotations, was 

performed for the mapping (Fig. 3). Each GMT module consists of the set of code lines, which, 

taken together as a script, produce and visualize maps. The main code line to generate geoid 

image with shading was as follows (Code 1): 

gmt grdimage geoid.egm96.grd -I+a45+nt1 -R105/123/8/24 -JD114/13/16/19/6i -Cgeoid.cpt -P -K > $ps 

The -R command shows the WESN coordinates of the main area: 105/123/8/24.  
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The gravity mapping shows free-air gravity anomalies covering study area including terrestrial 

and marine regions. Modelling was based on the data sets based on the CryoSat-2 and Jason-1 

satellite-derived data [36], for the Manila Trench and surrounding regions (South China Sea, 

the Philippines). The gravity modelling revealed ground information for the geologic and 

geophysical settings of the study area, as free-air gravity anomalies reflect subsurface density 

variations [37]. The gravity dataset covering research area is based on the map gridded with a 

resolution of one arc-minute (Fig. 4). The gravity map was plotted using following GMT code 

(Code 2): 

gmt grdimage gravRT.grd -I+a45+nt1 -R105/123/8/24 -JY114/12/6.5i -CgravRT.cpt -P -K > $ps 

 

 
Figure 8. Transect of the cross-section profiles digitized along the of the Manila Trench. Calculated statistical trends 

were compared for both segments of the trench to shows mathematic approximations of the curvature 

trends of their bathymetric shapes of the cross-sections. The statistical values of the geomorphic 

elevations show variations in the both segments. It enables to reveal general trends and helps to highlight 

correlations in the data distribution. Image source: author, made using GMT. 

 

The GMT modules used for plotting 3D model (Fig. 5) of the mesh grid showing 

geomorphological shape of the study area. Specifically, various GMT modules have been used: 

grdcut, grd2cpt, grdcontour, pscoast, grdview, logo, psconvert. The mesh gridding was selected 
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to visualize and highlight topographic and bathymetric landforms of the region, through 

dividing the input grid model into smaller shapes formed after discretization of the geometric 

model of the area. The main GMT code for modelling include the following code (Code 3): 

grdview mnt_relief.nc -J -R -JZ3.0c -CrainbowRT.cpt -p215/30 -Qsm –N-7500+glightgray -Wm0.07p -

Wf0.1p,red -Wc0.1p,magenta -B2/2/4000:"Bathymetry and topography (m)":eSWZ -S5 -Y6.5c -O -K >> $ps 

Using this code, the 2D initial meshing was divided into small simple polygons with curved 

contour lines and color palette highlighting the topography.  

The geomorphological modelling consisted in plotting two sets of the cross-section profiles and 

then comparing their parameters (Fig. 6). The raster image as a background (Fig. 6C) was 

mapped using following GMT code (Code 4): 

gmt grdimage mnt_relief.nc -CmyoceanMnT.cpt -R105/123/8/24 -JM6i -P -I+a15+ne0.75 -Xc -K > $ps 

The cross-track profiles were then generated with specific parameters. These are 400 km length, 

20 km distance, 2km sampling. The plotting and stacking these was done using the statistical 

mean, through the following code (Code 5): 

gmt grdtrack trenchMTn.txt -Gmnt_relief.nc -C400k/2k/20k+v -Sa+sstackMTn.txt > tableMTn.txt 

Two segments were plotted with the following coordinates (Code 6):  

cat << EOF > trenchMTn.txt 119.2 16.4 119.2 14.0 EOF 

cat << EOF > trenchMTs.txt 119.2 14.0 120.0 13.2 EOF 

The graphs (Fig. 6A and Fig. 6B) were plotted using following GMT code (Code 7):  

gmt psxy -R -J -W1.0p -Ey+p0.2p stackMTn.txt -O -K >> $ps 

gmt psxy -R -J -W1.0p,red stackMTn.txt -O -K >> $ps 

Minor GMT modules used for plotting cartographic elements included ‘psxy’, ‘logo’ 

‘psconvert’, as well as Unix ‘echo’ utility. 

The statistical modelling of the digitized cross-section profiles aimed at comparison of two sets 

in southern and northern segments, respectively, were done using module ‘pshistogram’ by 

following GMT code snippet (Code 8): 

gmt pshistogram tableMTn.txt -i4 -R-5500/1500/0/20 -JX4.8i/2.4i -Y7.5c -

Bpxg1000a1000f100+l"Bathymetry (m)" -Bpyg5a5f2.5+l"Frequency"+u" %" -Bsyg2.5 -

BWSne+t"Histograms of the bathymetry, Manila Trench: northern (A) and southern (B) parts"+gsnow1 

-Glightsteelblue1 -D+f7p,Times-Roman,black -L0.1p,dimgray -Z1 -W250 -N0+pred -N1+pblue -

N2+pgreen  -O -K >> $ps 
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4. RESULTS AND DISCUSSION 

Based on the patterns of the free-air gravity map (Fig. 4), the high density materials are 

distributed continuously from the northern the southern Taiwan vertically southwards to the 

Luzon Island, the Philippines from -50 mGal to -200 mGal. The majority of the values in the 

South China Sea areas lie between the 10 to 30 mGal, while values reaching >60 mGal can be 

noted in the island areas and southern Philippines. The significance on the free-air gravity 

differences for the two profiles consists in the principle of the free-air gravity map, which 

contains signals from the seafloor topography, sediments, and crust and mantle density 

anomalies. More specifically, the free-air anomaly is dominated by short wavelength variations 

which reflect the density contrast at the seafloor. Therefore, the differences highlight the 

unevenness in the geophysical properties in the study areas. Thus, the area crossed by the 

southern profile (Fig. 6, green transect) has dominant values of -50 to -220 mGal along the 

profile while northern profile (Fig. 6, yellow transect) has more values of -20 to 20 mGal in the 

surrounding coastal area. Asymmetric profile shapes and more gentle slope in the northern 

profile (Fig. 6) can point at local geophysical variations, e.g. pulsing, dehydrating, and radially 

flowing mantle plume. Furthermore, bathymetry and gravity data demonstrate that V-shaped 

profiles in the deepest parts of the cross-section (<-4,000 m) may be the result of sub-

lithospheric flow. It is formed because of the displacement of large volumes of magma at the 

trench axis which is reflected in its geomorphology as east-west asymmetry (Fig. 6). 

The statistical results (Fig. 7) show differences in the depth ranges of the Manila Trench along 

the Luzon island. The depth and morphological properties of the slope vary significantly for the 

range -3,500 to -4,500 m. Maximal values are notable for the northern part of the trench where 

526 observation points (18.2%) are recorded for the depths -4,000 to -4,200 m, as shown on 

Fig. 7A. The histogram for the northern part has a clear bimodal distribution with two peaks. 

The 2nd peak shows areas crossing the Luzon Island. On the contrary, southern part 

demonstrates 142 values for the minimal bathymetry with values -3,500 to -3400 m. The 1st 

peak also shows areas of the Luzon Island. The comparison of the statistical data analysis 

clearly shows that the northern part of the trench is deeper.  

The southern part of the trench has steeper slope from the oceanward part and on the contrary, 

the northern part is steeper in the continental slope part (Figs. 8A and 8F). The submarine 

terraces can be noted on the northern segment of the trench (Fig. 8F) at depths -2,000 m. 

Generally, mapping northern part shows steeper degree of the oceanward slope (pairwise 

comparing on Fig. 8: subplots C and H, D and I, E and J).  
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However, a gradually slanting terrace on the southern part of the trench can be seen on the 

fragment 50-100 of the cross-section with depths from -1,100 to -1,300 m. Hence, the 

comparison between two segments of the trench located on the northern and south-eastern part 

of the trench show that northern part of the trench has shallower values of depths comparing to 

the southern yet more steep slope on the Luzon Island side.  

The approaches to the data analysis, visualization and geological modelling are diverse. To 

mention some of them: tomographic, seismic and bathymetric 2D and 3D modelling, geologic 

cross-sectioning, seismic cross-section profiling, R programming language for analysis of 

correlation between variables [38, 39], ArcGIS based assessment and calculation of measured 

data [40-42], ILWIS GIS [43], Python statistical libraries, such as Matplotlib, NumPy, SciPy, 

Seaborn, Pandas, StatsModels [44, 45]. Using special software for automatization of the 

geodata can be illustrated by Autotrace [46], R packages [47], [48] or geological software [49, 

50]. In view of a variety of the approaches and methods illustrated above, the advantage of the 

GMT consists in its embedded statistical module that enable to visualize data and to perform 

descriptive statistical visualization and modelling as histograms showing data distribution.  

5. CONCLUSION 

The presented research sets out to demonstrate the utility of the Generic Mapping Tool (GMT) 

for cartographic visualization in support of interpreting geophysical data of the seafloor 

geomorphology of the Manila Trench. This investigation of the tectonic dynamics of the Manila 

Trench is an important problem in the field of geodynamics and relevant for understanding the 

potential origins of hazards related to earthquakes and tsunamis in the region. The study 

produces useful visual cues to interpret the tectonics of the crustal structure based on the derived 

data models such as the geoid, free-air gravity anomalies, bathymetry, and geology aimed at 

modelling and visualizing tectonic lithospheric settings and geological situation in the study 

area. 

The GMT cross-section stacking methodology [51-53] proved to be a successful means of 

visualizing and plotting geomorphological models applied for the submarine bathymetry by 

effectively minimizing the hand-made cartographic routine. Using GMT enables to 

automatically digitize profiles, perform statistical analysis by plotting histograms and model 

trends for the general shape of the profiles using mathematical models of the lines 

approximation. Several GMT modules were tested and applied for the cartographic 

visualization of the marine free-air gravity, geoid, bathymetric mapping, geomorphic modelling 
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and statistical data analysis. Two different trench segments were analyzed aimed at detecting 

their spatial changes for an area covering Manila Trench and adjusting Luzon Island (northern 

Philippines). The results provide useful recipes on GMT scripts that produce visualization 

outputs for interpretation and explanation of the tectonic dynamics of the Manila Trench. The 

application of GMT scripts, produced in this paper, can easily be adapted to other investigations 

using similar datasets. 

This paper also aims to close the knowledge gap on the geomorphological differences between 

the northern and southern part of the Manila Trench. Therefore, the goal of the GMT-based 

mapping was to relate geomorphological mapping to underlying tectonics conditions. These 

include the collision of two tectonic plates which causes instability in the region: repetitive 

earthquakes, submarine volcanism and high frequency of earthquakes in this region. Spatial 

variation in the south-east directed second segment (plotted as green line on Fig. 6C) shown 

steeper slopes on the oceanward side of the trench and deeper bathymetric records. On the 

contrary, northern segment (plotted as almost vertical yellow-colored line on Fig. 6C) 

demonstrated softer geomorphic shapes yet steeper gradient from the Luzon Island side. The 

fine-resolution data such as SRTM grid was used to map bathymetry and topography of the 

study area and 1-min resolution from the gravity data (Jason-1, CryoSat).  

Future work should consider applying other GMT modules and their combination. Developing 

a complex approaches of the cartographic-geophysical investigations include earthquake 

intensity modelling, mapping detailed volcanic arcs. The combination and overlapping of 

various geospatial data as layers aimed to examining and quantifying geomorphological 

submarine landforms in connection with tectonic settings would enable to get more information 

of these data using advanced geospatial data analysis. Other recommendation for the future 

research could be integration of the GMT with programming and advanced statistical packages 

that absent in GMT: clustering, dendrogram plotting, factor analysis, Principal Component 

Analysis, etc. 
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